
David S Kliger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9136346/publications.pdf Version: 2024-02-01

DAVID S KLICER

#	Article	IF	CITATIONS
1	Membrane Curvature Revisited—the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy. Biophysical Journal, 2021, 120, 440-452.	0.2	14
2	Functional integrity of membrane protein rhodopsin solubilized by styrene-maleic acid copolymer. Biophysical Journal, 2021, 120, 3508-3515.	0.2	8
3	Styrene-maleic acid copolymer effects on the function of the GPCR rhodopsin in lipid nanoparticles. Biophysical Journal, 2021, 120, 4337-4348.	0.2	11
4	Pump–Probe Circular Dichroism Spectroscopy of Cyanobacteriochrome TePixJ Yields: Insights into Its Photoconversion. Journal of Physical Chemistry B, 2021, 125, 202-210.	1.2	2
5	First Synthesis of Mn-Doped Cesium Lead Bromide Perovskite Magic Sized Clusters at Room Temperature. Journal of Physical Chemistry Letters, 2020, 11, 1162-1169.	2.1	41
6	VenusA206 Dimers Behave Coherently at Room Temperature. Biophysical Journal, 2019, 116, 1918-1930.	0.2	10
7	Enhancing Solarâ€Driven Water Splitting with Surfaceâ€Engineered Nanostructures. Solar Rrl, 2018, 3, 1800285.	3.1	5
8	Microviscosity in <i>E. coli</i> Cells from Time-Resolved Linear Dichroism Measurements. Journal of Physical Chemistry B, 2018, 122, 11381-11389.	1.2	3
9	Using chiral peptide substitutions to probe the structure function relationship of a key residue of Al²42. Chirality, 2017, 29, 5-9.	1.3	6
10	Time-Resolved Linear Dichroism Measurements of Carbonmonoxy Myoglobin as a Probe of the Microviscosity in Crowded Environments. Journal of Physical Chemistry B, 2017, 121, 7064-7074.	1.2	6
11	Protein Sequence and Membrane Lipid Roles in the Activation Kinetics of Bovine and Human Rhodopsins. Biophysical Journal, 2017, 113, 1934-1944.	0.2	7
12	Complexity of Bovine Rhodopsin Activation Revealed at Low Temperature and Alkaline pH. Biochemistry, 2016, 55, 5095-5105.	1.2	6
13	A Comparison between the Photoactivation Kinetics of Human and Bovine Rhodopsins. Biochemistry, 2016, 55, 7005-7013.	1.2	5
14	Role of Heme Pocket Water in Allosteric Regulation of Ligand Reactivity in Human Hemoglobin. Biochemistry, 2016, 55, 4005-4017.	1.2	7
15	Platymonas subcordiformis Channelrhodopsin-2 Function. Journal of Biological Chemistry, 2015, 290, 16573-16584.	1.6	9
16	Platymonas subcordiformis Channelrhodopsin-2 (PsChR2) Function. Journal of Biological Chemistry, 2015, 290, 16585-16594.	1.6	7
17	Probing Kinetic Mechanisms of Protein Function and Folding with Time-Resolved Natural and Magnetic Chiroptical Spectroscopies. International Journal of Molecular Sciences, 2012, 13, 683-697.	1.8	6
18	Effects of Macromolecular Crowding on Burst Phase Kinetics of Cytochrome <i>c</i> Folding. Biochemistry, 2012, 51, 9836-9845.	1.2	43

DAVID S KLIGER

#	Article	IF	CITATIONS
19	Schiff Base Protonation Changes in Siberian Hamster Ultraviolet Cone Pigment Photointermediates. Biochemistry, 2012, 51, 2630-2637.	1.2	20
20	Rhodopsin in Nanodiscs Has Native Membrane-like Photointermediates. Biochemistry, 2011, 50, 5086-5091.	1.2	25
21	Nanosecond time-resolved polarization spectroscopies: Tools for probing protein reaction mechanisms. Methods, 2010, 52, 3-11.	1.9	16
22	The pH Dependence of Heme Pocket Hydration and Ligand Rebinding Kinetics in Photodissociated Carbonmonoxymyoglobin. Journal of Biological Chemistry, 2008, 283, 14165-14175.	1.6	22
23	Photointermediates of the Rhodopsin S186A Mutant as a Probe of the Hydrogen-Bond Network in the Chromophore Pocket and the Mechanism of Counterion Switchâ€. Journal of Physical Chemistry C, 2007, 111, 8843-8848.	1.5	22
24	Lumi I → Lumi II: The Last Detergent Independent Process in Rhodopsin Photoexcitation. Photochemistry and Photobiology, 2006, 82, 1436-1441.	1.3	9
25	Lumi I → Lumi II: The Last Detergent Independent Process in Rhodopsin Photoexcitationâ€. Photochemistry and Photobiology, 2006, 82, 1436.	1.3	12
26	Effect of Digitonin on the Rhodopsin Meta Iâ€Meta II Equilibrium [¶] . Photochemistry and Photobiology, 2005, 81, 866-873.	1.3	2
27	Effect of Digitonin on the Rhodopsin Meta I–Meta II Equilibrium¶. Photochemistry and Photobiology, 2005, 81, 866.	1.3	6
28	Effect of Digitonin on the Rhodopsin Meta I - Meta II Equilibrium. Photochemistry and Photobiology, 2005, 81, 866-73.	1.3	6
29	Kinetic and Spectroscopic Analysis of Early Events in Protein Folding. Methods in Enzymology, 2004, 380, 308-327.	0.4	2
30	Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles. Journal of Chemical Physics, 2003, 118, 12-16.	1.2	58
31	Earliest Events in Protein Folding:Â Submicrosecond Secondary Structure Formation in Reduced Cytochromecâ€,‡. Journal of Physical Chemistry A, 2003, 107, 8149-8155.	1.1	24
32	Two Intermediates Appear on the Lumirhodopsin Time Scale after Rhodopsin Photoexcitationâ€. Biochemistry, 2003, 42, 5091-5098.	1.2	16
33	Steric Barrier to Bathorhodopsin Decay in 5-Demethyl and Mesityl Analogues of Rhodopsin. Journal of the American Chemical Society, 2001, 123, 10024-10029.	6.6	17
34	[12] Absorption spectroscopy in studies of visual pigments: Spectral and kinetic characterization of intermediates. Methods in Enzymology, 2000, 315, 164-178.	0.4	40
35	Characterization of equilibrium intermediates in denaturant-induced unfolding of ferrous and ferric cytochromesc using magnetic circular dichroism, circular dichroism, and optical absorption spectroscopies. , 2000, 57, 29-36.		43
36	Effect of NADPH on formation and decay of human metarhodopsin III at physiological temperatures. Vision Research, 2000, 40, 3039-3048.	0.7	7

DAVID S KLIGER

#	Article	IF	CITATIONS
37	pH Dependence of Photolysis Intermediates in the Photoactivation of Rhodopsin Mutant E113Q. Biochemistry, 2000, 39, 599-606.	1.2	19
38	Structural Constraints Imposed by a Non-Native Disulfide Cause Reversible Changes in Rhodopsin Photointermediate Kineticsâ€. Biochemistry, 2000, 39, 7851-7855.	1.2	3
39	Femtosecond Studies of Electronic Relaxation, Vibrational Relaxation, and Rotational Diffusion in all-trans-1,8-Diphenyl-1,3,5,7-octatetraene. Journal of Physical Chemistry A, 1999, 103, 2388-2393.	1.1	12
40	Far-UV Time-Resolved Circular Dichroism Detection of Electron-Transfer-Triggered CytochromecFolding. Journal of the American Chemical Society, 1999, 121, 3811-3817.	6.6	68
41	The Effects of Octanol on the Late Photointermediates of Rhodopsin. Photochemistry and Photobiology, 1998, 68, 762-770.	1.3	5
42	Spectroscopic Evidence for Nanosecond Protein Relaxation after Photodissociation of Myoglobina ^{~2} CO. Biochemistry, 1998, 37, 17527-17536.	1.2	42
43	Effects of pH on Rhodopsin Photointermediates from Lumirhodopsin to Metarhodopsin II. Biochemistry, 1998, 37, 6998-7005.	1.2	43
44	Time-Resolved Circular Dichroism Studies of Protein Folding Intermediates of Cytochrome c. Biochemistry, 1998, 37, 5589-5598.	1.2	70
45	Proton Transfer Reactions Linked to Rhodopsin Activationâ€. Biochemistry, 1998, 37, 14237-14244.	1.2	45
46	FAST NATURAL AND MAGNETIC CIRCULAR DICHROISM SPECTROSCOPY. Annual Review of Physical Chemistry, 1997, 48, 453-479.	4.8	42
47	NANOSECOND TIME-RESOLVED SPECTROSCOPY OF BIOMOLECULAR PROCESSES. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 327-355.	18.3	38
48	Time-Resolved Spectroscopy of the Early Photolysis Intermediates of Rhodopsin Schiff Base Counterion Mutantsâ€. Biochemistry, 1997, 36, 1999-2009.	1.2	19
49	Dynamics of the N-Terminal α-Helix Unfolding in the Photoreversion Reaction of PhytochromeAâ€. Biochemistry, 1997, 36, 4903-4908.	1.2	26
50	Early Photolysis Intermediates of Gecko and Bovine Artificial Visual Pigmentsâ€. Biochemistry, 1997, 36, 14593-14600.	1.2	7
51	Absorbance Changes by Aromatic Amino Acid Side Chains in Early Rhodopsin Photointermediates. Photochemistry and Photobiology, 1997, 66, 741-746.	1.3	7
52	Mechanism of Native Oat Phytochrome Photoreversion: A Time-Resolved Absorption Investigationâ€. Biochemistry, 1996, 35, 843-850.	1.2	32
53	Allosteric Intermediates in Hemoglobin. 2. Kinetic Modeling of HbCO Photolysis,. Biochemistry, 1996, 35, 8628-8639.	1.2	44
54	Time-resolved near UV circular dichroism and absorption studies of carbonmonoxymyoglobin photolysis intermediates. Inorganica Chimica Acta, 1996, 242, 149-158.	1.2	26

DAVID S KLIGER

#	Article	IF	CITATIONS
55	Theory of magnetic circular dichroism in molecules oriented by photoselection. Journal of Chemical Physics, 1996, 104, 6930-6937.	1.2	3
56	Nanosecond timeâ€resolved circular dichroism measurements using an upconverted Ti:sapphire laser. Review of Scientific Instruments, 1996, 67, 3010-3016.	0.6	21
57	Spectral and Kinetic Characterization of Visual Pigment Photointermediates. Israel Journal of Chemistry, 1995, 35, 289-307.	1.0	60
58	Theory of natural circular dichroism in molecules oriented by photoselection. Journal of Chemical Physics, 1994, 100, 8602-8613.	1.2	7
59	Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers. Chemical Physics Letters, 1994, 224, 145-154.	1.2	19
60	Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. Biochemistry, 1993, 32, 13861-13872.	1.2	82
61	Microliter flow cell for measurement of irreversible optical absorbance transients. Review of Scientific Instruments, 1993, 64, 2828-2833.	0.6	19
62	Time-resolved absorption studies of native etiolated oat phytochrome. Journal of the American Chemical Society, 1992, 114, 4569-4580.	6.6	69
63	Time-resolved circular dichroism of native oat phytochrome photointermediates. Journal of the American Chemical Society, 1992, 114, 4581-4588.	6.6	41
64	Photointermediates of visual pigments. Journal of Bioenergetics and Biomembranes, 1992, 24, 201-210.	1.0	60
65	SOLVENT AND TEMPERATURE EFFECTS ON THE EXCITED SINGLET STATE ABSORPTION OF DIPHENYLBUTADIENE. Photochemistry and Photobiology, 1992, 56, 953-958.	1.3	5
66	PHOTOLYSIS OF RHODOPSIN RESULTS IN DEPROTONATION OF ITS RETINAL SCHIFF'S BASE PRIOR TO FORMATION OF METARHODOPSIN II. Photochemistry and Photobiology, 1992, 56, 1135-1144.	1.3	41
67	Nanosecond photolysis of rhodopsin: evidence for a new blue-shifted intermediate. Biochemistry, 1990, 29, 1475-1485.	1.2	143
68	Direct evidence for an equilibrium between early photolysis intermediates of rhodopsin. Journal of the American Chemical Society, 1990, 112, 6711-6712.	6.6	10