
I A Grant Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9136282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy and Environmental Science, 2010, 3, 1238.	15.6	1,004
2	A review of pumped hydro energy storage development in significant international electricity markets. Renewable and Sustainable Energy Reviews, 2016, 61, 421-432.	8.2	283
3	Sustainable Ammonia Production Processes. Frontiers in Energy Research, 2021, 9, .	1.2	198
4	Rapid fuel switching from coal to natural gas through effective carbon pricing. Nature Energy, 2018, 3, 365-372.	19.8	130
5	Historical daily gas and electrical energy flows through Great Britain's transmission networks and the decarbonisation of domestic heat. Energy Policy, 2013, 61, 301-305.	4.2	68
6	Towards an objective method to compare energy storage technologies: development and validation of a model to determine the upper boundary of revenue available from electrical price arbitrage. Energy and Environmental Science, 2012, 5, 5425-5436.	15.6	48
7	Energy storage in the UK electrical network: Estimation of the scale and review of technology options. Energy Policy, 2010, 38, 4099-4106.	4.2	47
8	Maximising revenue for nonâ€firm distributed wind generation with energy storage in an active management scheme. IET Renewable Power Generation, 2013, 7, 421-430.	1.7	24
9	Grid-connected renewables, storage and the UK electricity market. Renewable Energy, 2011, 36, 2166-2170.	4.3	22
10	Why Synthetic Fuels Are Necessary in Future Energy Systems. Frontiers in Energy Research, 2017, 5, .	1.2	19
11	The theoretical potential for large-scale underground thermal energy storage (UTES) within the UK. Energy Reports, 2020, 6, 229-237.	2.5	19
12	An analysis of storage revenues from the time-shifting of electrical energy in Germany and Great Britain from 2010 to 2016. Journal of Energy Storage, 2018, 17, 446-456.	3.9	18
13	Harvesting Environmental Microalgal Blooms for Remediation and Resource Recovery: A Laboratory Scale Investigation with Economic and Microbial Community Impact Assessment. Biology, 2018, 7, 4.	1.3	14
14	End use and disposal of CO ₂ – storage or utilisation?: general discussion. Faraday Discussions, 2016, 192, 561-579.	1.6	10
15	Where did the time (series) go? Estimation of marginal emission factors with autoregressive components. Energy Economics, 2020, 91, 104905.	5.6	8
16	Can negative electricity prices encourage inefficient electrical energy storage devices?. International Journal of Environmental Studies, 0, , 1-15.	0.7	6
17	Maximising revenue for non-firm distributed wind generation with energy storage in an active management scheme. , 2011, , .		5
18	Great Britain's Energy Vectors and Transmission Level Energy Storage. Energy Procedia, 2014, 62, 619-628.	1.8	5

I A GRANT WILSON

#	Article	IF	CITATIONS
19	CCS – A technology for now: general discussion. Faraday Discussions, 2016, 192, 125-151.	1.6	5
20	Energy Data Visualization Requires Additional Approaches to Continue to be Relevant in a World with Greater Low-Carbon Generation. Frontiers in Energy Research, 2016, 4, .	1.2	4
21	CCS – A technology for the future: general discussion. Faraday Discussions, 2016, 192, 303-335.	1.6	4
22	CO2-Derived Fuels forÂEnergy Storage. , 2015, , 33-44.		3
23	Domestic heating with compact combination hybrids (gas boiler and heat pump): A simple English stock model of different heating system scenarios. Building Services Engineering Research and Technology, 2022, 43, 143-159.	0.9	1
24	Calculating Great Britain's half-hourly electrical demand from publicly available data. Energy Strategy Reviews, 2021, 38, 100743.	3.3	1
25	Modelling – from molecules to mega-scale: general discussion. Faraday Discussions, 2016, 192, 493-509.	1.6	Ο
26	Una representación diaria de los vectores energéticos de Gran Bretaña: gas natural, electricidad y combustibles para transporte. Avances En Ciencias E IngenierÃas, 2014, 6, .	0.1	0