
Ahmet K Avci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9135857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling of a membrane integrated catalytic microreactor for efficient DME production from syngas with CO2. Catalysis Today, 2022, 383, 133-145.	4.4	16
2	A highly active and stable Ru catalyst for syngas production via glycerol dry reforming: Unraveling the interplay between support material and the active sites. Applied Catalysis A: General, 2022, 636, 118577.	4.3	4
3	Comparison of intensified reactor systems for one–step conversion of CO2–containing syngas to DME. Chemical Engineering and Processing: Process Intensification, 2021, 167, 108538.	3.6	5
4	Sustainable DME synthesis from CO2–rich syngas in a membrane assisted reactor–microchannel heat exchanger system. Journal of CO2 Utilization, 2021, 52, 101660.	6.8	11
5	Recent advances in materials for high purity H2 production by ethanol and glycerol steam reforming. International Journal of Hydrogen Energy, 2020, 45, 34888-34917.	7.1	30
6	Recent advances in sustainable syngas production by catalytic CO ₂ reforming of ethanol and glycerol. Sustainable Energy and Fuels, 2020, 4, 1029-1047.	4.9	40
7	Strategies for improving CO2 utilization in microchannel enabled production of dimethyl ether. Chemical Engineering and Processing: Process Intensification, 2020, 151, 107914.	3.6	15
8	Exceptionally active and stable catalysts for CO2 reforming of glycerol to syngas. Applied Catalysis B: Environmental, 2019, 256, 117808.	20.2	35
9	Intensified dimethyl ether production from synthesis gas with CO2. Chemical Engineering Journal, 2019, 370, 885-896.	12.7	21
10	Ethylene oxide synthesis in a wall-coated microchannel reactor with integrated cooling. Chemical Engineering Journal, 2019, 377, 120104.	12.7	16
11	Oxidative steam reforming of glycerol to synthesis gas in a microchannel reactor. Catalysis Today, 2019, 323, 200-208.	4.4	22
12	Modeling of intensified glycerol steam reforming in a heat-exchange integrated microchannel reactor. Catalysis Today, 2018, 299, 328-338.	4.4	21
13	Modeling and simulation of water-gas shift in a heat exchange integrated microchannel converter. International Journal of Hydrogen Energy, 2018, 43, 1094-1104.	7.1	22
14	2.16 Catalysts. , 2018, , 475-523.		4
15	Dry reforming of glycerol over Rh-based ceria and zirconia catalysts: New insights on catalyst activity and stability. Applied Catalysis A: General, 2018, 564, 157-171.	4.3	43
16	Reforming of glycerol to hydrogen over Ni-based catalysts in a microchannel reactor. Fuel Processing Technology, 2017, 156, 357-365.	7.2	37
17	Simulation of exhaust gas reforming of natural gas in a microchannel reactor. International Journal of Hydrogen Energy, 2016, 41, 8184-8192.	7.1	15
18	Intensified catalytic reactors for Fischer-Tropsch synthesis and for reforming of renewable fuels to hydrogen and synthesis gas. Fuel Processing Technology, 2016, 151, 72-100.	7.2	74

Анмет К Аусі

#	Article	IF	CITATIONS
19	Parametric investigation of oxidative coupling of methane in a heatâ€exchange integrated microchannel reactor. Journal of Chemical Technology and Biotechnology, 2015, 90, 1827-1838.	3.2	17
20	Modeling and design of a microchannel reformer for efficient conversion of glycerol to hydrogen. International Journal of Hydrogen Energy, 2015, 40, 7579-7585.	7.1	18
21	Exhaust Gas Reforming of Methane in a Catalytic Microchannel Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 1760-1767.	3.7	5
22	Simulation of exhaust gas reforming of propane in a heat exchange integrated microchannel reactor. International Journal of Hydrogen Energy, 2014, 39, 844-852.	7.1	17
23	Microchannel Autothermal Reforming of Methane to Synthesis Gas. Topics in Catalysis, 2013, 56, 1716-1723.	2.8	9
24	Oxidative steam reforming of methane to synthesis gas in microchannel reactors. International Journal of Hydrogen Energy, 2013, 38, 870-878.	7.1	27
25	Modeling and Simulation of Hydrocracking of Fischer–Tropsch Hydrocarbons in a Catalytic Microchannel Reactor. Industrial & Engineering Chemistry Research, 2012, 51, 8913-8921.	3.7	15
26	Parametric study of methane steam reforming to syngas in a catalytic microchannel reactor. Applied Catalysis A: General, 2012, 411-412, 114-122.	4.3	32
27	Parametric analysis of Fischerâ€ŧropsch synthesis in a catalytic microchannel reactor. AICHE Journal, 2012, 58, 227-235.	3.6	27
28	Reactor Design for Fuel Processing. , 2011, , 451-516.		8
29	Investigation of catalyst performance and microstructured reactor configuration for syngas production by methane steam reforming. Catalysis Today, 2011, 178, 157-163.	4.4	36
30	Microchannel reactor modeling for combustion driven reforming of iso-octane. International Journal of Hydrogen Energy, 2011, 36, 6569-6577.	7.1	29
31	Comparison of compact reformer configurations for on-board fuel processing. International Journal of Hydrogen Energy, 2010, 35, 2305-2316.	7.1	28
32	Microreactor catalytic combustion for chemicals processing. Catalysis Today, 2010, 155, 66-74.	4.4	36
33	Simulation of on-Board Fuel Conversion in Catalytic Microchannel Reactor-Heat Exchanger Systems. Topics in Catalysis, 2009, 52, 2112-2116.	2.8	21
34	Thermodynamic analysis of steam assisted conversions of bio-oil components to synthesis gas. International Journal of Hydrogen Energy, 2009, 34, 1752-1759.	7.1	45
35	Steady-state and dynamic modeling of indirect partial oxidation of methane in a wall-coated microchannel. Catalysis Today, 2009, 139, 312-321.	4.4	26
36	Design of a methane processing system producing high-purity hydrogen. International Journal of Hydrogen Energy, 2008, 33, 5516-5526.	7.1	23

Анмет К Аусі

#	Article	IF	CITATIONS
37	Production of hydrogen over bimetallic Pt–Ni/δ-Al2O3. Applied Catalysis A: General, 2005, 280, 181-188.	4.3	53
38	Investigation of ethanol conversion for hydrogen fuel cells using computer simulations. Journal of Chemical Technology and Biotechnology, 2005, 80, 1103-1110.	3.2	17
39	Hydrogen production by steam reforming of n-butane over supported Ni and Pt-Ni catalysts. Applied Catalysis A: General, 2004, 258, 235-240.	4.3	89
40	On-Board Hydrogen Generation for Fuel Cell-Powered Vehicles: The Use of Methanol and Propane. Topics in Catalysis, 2003, 22, 359-367.	2.8	20
41	lgnition Characteristics of Pt, Ni and Pt-Ni Catalysts Used for Autothermal Fuel Processing. Catalysis Letters, 2003, 88, 17-22.	2.6	29
42	Quantitative investigation of catalytic natural gas conversion for hydrogen fuel cell applications. Chemical Engineering Journal, 2002, 90, 77-87.	12.7	20
43	On-board fuel conversion for hydrogen fuel cells: comparison of different fuels by computer simulations. Applied Catalysis A: General, 2001, 216, 243-256.	4.3	58