Samira Khelifi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/913577/publications.pdf Version: 2024-02-01

SAMIDA KHELIEL

#	Article	IF	CITATIONS
1	Advanced electrical simulation of thin film solar cells. Thin Solid Films, 2013, 535, 296-301.	1.8	342
2	Modelling multivalent defects in thin film solar cells. Thin Solid Films, 2011, 519, 7481-7484.	1.8	151
3	Investigation of defects by admittance spectroscopy measurements in poly (3-hexylthiophene):(6,6)-phenyl C61-butyric acid methyl ester organic solar cells degraded under air exposure. Journal of Applied Physics, 2011, 110, .	2.5	112
4	KCN Chemical Etch for Interface Engineering in Cu ₂ ZnSnSe ₄ Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14690-14698.	8.0	62
5	Effect of Polymer Crystallinity in P3HT:PCBM Solar Cells on Band Gap Trap States and Apparent Recombination Order. Advanced Energy Materials, 2013, 3, 466-471.	19.5	48
6	Effect of light induced degradation on electrical transport and charge extraction in polythiophene:Fullerene (P3HT:PCBM) solar cells. Solar Energy Materials and Solar Cells, 2014, 120, 244-252.	6.2	43
7	Numerical simulation of the impurity photovoltaic effect in silicon solar cells. Renewable Energy, 2008, 33, 293-298.	8.9	37
8	Defect distributions in thin film solar cells deduced from admittance measurements under different bias voltages. Journal of Applied Physics, 2011, 110, .	2.5	37
9	Assignment of capacitance spectroscopy signals of CIGS solar cells to effects of non-ohmic contacts. Solar Energy Materials and Solar Cells, 2013, 112, 78-83.	6.2	33
10	Spectral current–voltage analysis of kesterite solar cells. Journal Physics D: Applied Physics, 2014, 47, 175101.	2.8	33
11	Modelling of the perimeter recombination effect in GaAs-based micro-solar cell. Solar Energy Materials and Solar Cells, 2006, 90, 1-14.	6.2	32
12	Impurity photovoltaic effect in GaAs solar cell with two deep impurity levels. Solar Energy Materials and Solar Cells, 2008, 92, 1559-1565.	6.2	30
13	Electrical characterization of all-layers-sprayed solar cell based on ZnO nanorods and extremely thin CIS absorber. Solar Energy, 2013, 91, 48-58.	6.1	26
14	A simple correction method for series resistance and inductance on solar cell admittance spectroscopy. Solar Energy Materials and Solar Cells, 2010, 94, 966-970.	6.2	23
15	About RCâ€like contacts in deep level transient spectroscopy and Cu(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20, 588-594.	8.1	23
16	Signature of a back contact barrier in DLTS spectra. Journal of Applied Physics, 2011, 109, .	2.5	22
17	Characterization of flexible thin film CIGSe solar cells grown on different metallic foil substrates. Energy Procedia, 2010, 2, 109-117.	1.8	21
18	Photoluminescence investigation of Cu 2 ZnSnS 4 thin film solar cells. Thin Solid Films, 2015, 582, 146-150.	1.8	19

Samira Khelifi

#	Article	IF	CITATIONS
19	Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices. Sustainable Energy and Fuels, 2019, 3, 2246-2259.	4.9	19
20	Sulfurization of co-evaporated Cu2ZnSnSe4 thin film solar cells: The role of Na. Solar Energy Materials and Solar Cells, 2018, 186, 115-123.	6.2	17
21	The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application. Solar Energy Materials and Solar Cells, 2021, 219, 110824.	6.2	17
22	Analytical versus numerical analysis of back grading in CIGS solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1550-1554.	6.2	16
23	Lanthanide-centered luminescence evolution and potential anti-counterfeiting application of Tb ³⁺ /Eu ³⁺ grafted melamine cyanurate hydrogen-bonded triazine frameworks. Materials Chemistry Frontiers, 2019, 3, 579-586.	5.9	15
24	Sputter deposition of copper oxide films. Applied Surface Science, 2019, 492, 711-717.	6.1	14
25	Effect of Na and the back contact on Cu2Zn(Sn,Ge)Se4 thin-film solar cells: Towards semi-transparent solar cells. Solar Energy, 2020, 206, 555-563.	6.1	11
26	Effects of temperature and series resistance on GaAs concentrator solar cell. EPJ Applied Physics, 2008, 41, 115-119.	0.7	9
27	Effect of Binder Content in Cu–In–Se Precursor Ink on the Physical and Electrical Properties of Printed CuInSe ₂ Solar Cells. Journal of Physical Chemistry C, 2014, 118, 27201-27209.	3.1	9
28	Numerical simulation of the effect of the Al molar fraction and thickness of an AlxGa1â^'xAs window on the sensitivity of a p+–n–n+ GaAs solar cell to 1MeV electron irradiation. Renewable Energy, 2009, 34, 2426-2431.	8.9	7
29	Interface Engineering in CuInSe ₂ Solar Cells Using Ammonium Sulfide Vapors. Solar Rrl, 2017, 1, 1700067.	5.8	7
30	Numerical modelling of the performance-limiting factors in CZGSe solar cells. Journal Physics D: Applied Physics, 2020, 53, 385102.	2.8	7
31	Investigation of recombination mechanisms in Cu(In,Ga)Se <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2531" altimg="si3.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> solar cells using</mmi:math 	6.1	7
32	numerical modelling. Solar Energy, 2021, 228, 464-473. Fructosamine-3-Kinase as a Potential Treatment Option for Age-Related Macular Degeneration. Journal of Clinical Medicine, 2020, 9, 2869.	2.4	6
33	The AlxGa1â^'xAs window composition effect on the hardness improvement of a p+–n–n+GaAs solar cell exposed to the electron irradiation. Energy Conversion and Management, 2010, 51, 1676-1678.	9.2	5
34	Non-Isothermal Modeling of Dark Current-Voltage Measurements of a CIGS Solar Cell. ECS Journal of Solid State Science and Technology, 2018, 7, P50-P54.	1.8	5
35	Modelling and measurement of the metastable defect distribution in chalcopyrite-based thin film solar cells. Thin Solid Films, 2013, 535, 362-365.	1.8	4
36	Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2015, 583, 142-150.	1.8	4

#	Article	IF	CITATIONS
37	Can a multivalent defect be mimicked by several Shockley–Read–Hall-like defects?. Journal of Applied Physics, 2010, 108, 063707.	2.5	2
38	Determination of Majority Carrier Capture Rates via Deep Level Transient Spectroscopy. ECS Journal of Solid State Science and Technology, 2016, 5, P3041-P3047.	1.8	1
39	Identification of vanadium dopant sites in the metal–organic framework DUT-5(Al). Physical Chemistry Chemical Physics, 2021, 23, 7088-7100.	2.8	1