Tong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9135559/publications.pdf

Version: 2024-02-01

933447 1058476 14 666 10 14 citations h-index g-index papers 14 14 14 1072 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Hydrothermal Synthesis of Self-Assembled Hierarchical Tungsten Oxides Hollow Spheres and Their Gas Sensing Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10108-10114.	8.0	130
2	3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Advances, 2014, 4, 22601.	3.6	126
3	Novel 3D graphene aerogel–ZnO composites as efficient detection for NO2 at room temperature. Sensors and Actuators B: Chemical, 2015, 211, 220-226.	7.8	117
4	Controlled synthesis of defect-rich ultrathin two-dimensional WO3 nanosheets for NO2 gas detection. Sensors and Actuators B: Chemical, 2017, 245, 828-834.	7.8	61
5	Layer-by-layer nanocomposites consisting of Co3O4 and reduced graphene (rGO) nanosheets for high selectivity ethanol gas sensors. Applied Surface Science, 2019, 479, 601-607.	6.1	45
6	3D Fe ₃ O ₄ nanoparticle/graphene aerogel for NO ₂ sensing at room temperature. RSC Advances, 2015, 5, 73699-73704.	3.6	44
7	Hollow cubic ZnSnO3 with abundant oxygen vacancies for H2S gas sensing. Journal of Hazardous Materials, 2020, 391, 122226.	12.4	44
8	Growth of SnO ₂ nanowire arrays by ultrasonic spray pyrolysis and their gas sensing performance. RSC Advances, 2014, 4, 43429-43435.	3.6	36
9	Sprayâ€Coated Commercial PTFE Membrane from MoS ₂ /LaF ₃ /PDMS Ink as Solar Absorber for Efficient Solar Steam Generation. Solar Rrl, 2020, 4, 2000126.	5.8	31
10	Fabrication of monodispersed hollow flower-like porous In ₂ O ₃ nanostructures and their application as gas sensors. RSC Advances, 2015, 5, 81407-81414.	3.6	13
11	Heterolayered SnO ₂ /SnSe Nanosheets for Detection of NO ₂ at Room Temperature. ACS Applied Nano Materials, 2022, 5, 2436-2444.	5.0	9
12	Facile Synthesis of Cu/Cu ₂ O Nanoparticlesâ€"Graphene Composites for Efficient Detection of NO ₂ at Room Temperature. Nano, 2016, 11, 1650102.	1.0	5
13	Detection of elemental mercury in flue-gas by a chemiresistive SnS–SnO2 ccomposite ssensor. Sensors and Actuators B: Chemical, 2020, 318, 128290.	7.8	3
14	Novel SnO2@open microcell-liked graphene network as efficient detection for NO2. Integrated Ferroelectrics, 2019, 197, 111-120.	0.7	2