
Marc Hanewinkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9135363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roadmap to develop a stress test for forest ecosystem services supply. One Earth, 2022, 5, 25-34.	3.6	9
2	Broad-scale and long-term forest growth predictions and management for native, mixed species plantations and teak in Costa Rica and Panama. Forest Ecology and Management, 2022, 520, 120386.	1.4	4
3	Number and height of unbrowsed saplings are more appropriate than the proportion of browsed saplings for predicting silvicultural regeneration success. Annals of Forest Science, 2021, 78, 1.	0.8	3
4	Financial viability of a fully simulated transformation from even-aged to uneven-aged stand structure in forests of different ages. Forestry, 2021, 94, 479-491.	1.2	5
5	Concerns about reported harvests in European forests. Nature, 2021, 592, E15-E17.	13.7	56
6	Abiotic disturbances affect forest short-term vegetation cover and phenology in Southwest China. Ecological Indicators, 2021, 124, 107393.	2.6	7
7	Applying a scienceâ€based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy, 2021, 13, 1210-1231.	2.5	49
8	Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. Global Change Biology, 2021, 27, 4403-4419.	4.2	64
9	Climate change may induce connectivity loss and mountaintop extinction in Central American forests. Communications Biology, 2021, 4, 869.	2.0	7
10	Magnitude and timing of density reduction are key for the resilience to severe drought in conifer-broadleaf mixed forests in Central Europe. Annals of Forest Science, 2021, 78, 1.	0.8	16
11	Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland. Geoderma Regional, 2021, 27, e00437.	0.9	16
12	Retention as an integrated biodiversity conservation approach for continuous-cover forestry in Europe. Ambio, 2020, 49, 85-97.	2.8	106
13	Socially optimal forest management and biodiversity conservation in temperate forests under climate change. Ecological Economics, 2020, 169, 106504.	2.9	22
14	Gains or Losses in Forest Productivity under Climate Change? The Uncertainty of CO2 Fertilization and Climate Effects. Climate, 2020, 8, 141.	1.2	16
15	Microtopography shapes soil pH in flysch regions across Switzerland. Geoderma, 2020, 380, 114663.	2.3	17
16	Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model. Ecological Modelling, 2020, 438, 109285.	1.2	11
17	Risk aversion hinders forestry professionals to adapt to climate change. Climatic Change, 2020, 162, 2157-2180.	1.7	19
18	Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multiâ€scale approach. Ecology and Evolution, 2020, 10, 1489-1509.	0.8	56

#	Article	IF	CITATIONS
19	Identifying decision-relevant uncertainties for dynamic adaptive forest management under climate change. Climatic Change, 2020, 163, 891-911.	1.7	16
20	Can nature conservation and wood production be reconciled in managed forests? A review of driving factors for integrated forest management in Europe. Journal of Environmental Management, 2020, 268, 110670.	3.8	46
21	Reconciling forest profitability and biodiversity conservation under disturbance risk: the role of forest management and salvage logging. Environmental Research Letters, 2020, 15, 0940a3.	2.2	12
22	Climate change and the provision of biodiversity in public temperate forests – A mechanism design approach for the implementation of biodiversity conservation policies. Journal of Environmental Management, 2019, 246, 706-716.	3.8	3
23	Digitization in wood supply – A review on how Industry 4.0 will change the forest value chain. Computers and Electronics in Agriculture, 2019, 162, 206-218.	3.7	113
24	Simulation of extreme storm effects on regional forest soil carbon stock. Ecological Modelling, 2019, 399, 39-53.	1.2	5
25	Quantifying the risk mitigation efficiency of changing silvicultural systems under storm risk throughout history. Annals of Forest Science, 2019, 76, 1.	0.8	16
26	Diversification of forest management regimes secures tree microhabitats and bird abundance under climate change. Science of the Total Environment, 2019, 650, 2717-2730.	3.9	40
27	Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry. Scientific Reports, 2018, 8, 345.	1.6	50
28	Conservation Costs of Retention Forestry and Optimal Habitat Network Selection in Southwestern Germany. Ecological Economics, 2018, 148, 92-102.	2.9	13
29	Adaptation to Climate Change in Forestry: A Multiple Correspondence Analysis (MCA). Forests, 2018, 9, 20.	0.9	18
30	Multiple uncertainties require a change of conservation practices for saproxylic beetles in managed temperate forests. Scientific Reports, 2018, 8, 14964.	1.6	10
31	Challenging the assumptions of a standard model: How historical triggers in terms of technical innovations, labor costs and timber price change the land expectation value. Forest Policy and Economics, 2018, 95, 46-56.	1.5	4
32	Segregated versus integrated biodiversity conservation: Value-based ecosystem service assessment under varying forest management strategies in a Swiss case study. Ecological Indicators, 2018, 95, 751-764.	2.6	34
33	Strategies of Handling Risk and Uncertainty in Forest Management in Central Europe. Current Forestry Reports, 2017, 3, 60-73.	3.4	11
34	Management of ecosystem services in mountain forests: Review of indicators and value functions for model based multi-criteria decision analysis. Ecological Indicators, 2017, 79, 391-409.	2.6	69
35	Forest recreation as a governance problem: four case studies from Switzerland. European Journal of Forest Research, 2017, 136, 511-526.	1.1	25
36	Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?. Environmental Research Letters, 2017, 12, 034027.	2.2	142

#	Article	IF	CITATIONS
37	Productivity of Fagus sylvatica under climate change – A Bayesian analysis of risk and uncertainty using the model 3-PG. Forest Ecology and Management, 2017, 401, 192-206.	1.4	31
38	Linking annual variations of roe deer bag records to large-scale winter conditions: spatio-temporal development in Europe between 1961 and 2013. European Journal of Wildlife Research, 2017, 63, 1.	0.7	9
39	Pertinence of reactive, active, and robust adaptation strategies in forest management under climate change. Annals of Forest Science, 2017, 74, 1.	0.8	20
40	Adopting robust decision-making to forest management under climate change. Annals of Forest Science, 2017, 74, 1.	0.8	20
41	By 2050 the Mitigation Effects of EU Forests Could Nearly Double through Climate Smart Forestry. Forests, 2017, 8, 484.	0.9	124
42	A framework for modeling adaptive forest management and decision making under climate change. Ecology and Society, 2017, 22, .	1.0	72
43	Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation. Environmental Modelling and Software, 2017, 95, 13-21.	1.9	35
44	Climate Change Impairs Nitrogen Cycling in European Beech Forests. PLoS ONE, 2016, 11, e0158823.	1.1	42
45	Climate Change and Decision-Making Under Uncertainty. Current Forestry Reports, 2016, 2, 143-149.	3.4	42
46	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	13.7	655
47	Forest Owners' Response to Climate Change: University Education Trumps Value Profile. PLoS ONE, 2016, 11, e0155137.	1.1	13
48	Institutional factors and opportunities for adapting European forest management to climate change. Regional Environmental Change, 2015, 15, 1595-1609.	1.4	20
49	Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Global Change Biology, 2015, 21, 935-946.	4.2	110
50	An actuarial model of forest insurance against multiple natural hazards in fir (Abies Alba Mill.) stands in Slovakia. Forest Policy and Economics, 2015, 55, 46-57.	1.5	37
51	How treatment, storm events and changed climate affect productivity of temperate forests in SW Germany. Regional Environmental Change, 2015, 15, 1531-1542.	1.4	12
52	Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Regional Environmental Change, 2015, 15, 1581-1594.	1.4	93
53	Forestry professionals' perceptions of climate change, impacts and adaptation strategies for forests in south-west Germany. Climatic Change, 2015, 130, 273-286.	1.7	48
54	Models for adaptive forest management. Regional Environmental Change, 2015, 15, 1483-1487.	1.4	20

#	Article	IF	CITATIONS
55	Vulnerability of uneven-aged forests to storm damage. Forestry, 2014, 87, 525-534.	1.2	72
56	Tackling climate change—the contribution of scientific knowledge in forestry. Annals of Forest Science, 2014, 71, 113-115.	0.8	4
57	Economic performance of uneven-aged forests analysed with annuities. Forestry, 2014, 87, 49-60.	1.2	11
58	Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management?. Journal of Environmental Management, 2014, 146, 69-83.	3.8	460
59	Forest owner motivations and attitudes towards supplying biomass for energy in Europe. Biomass and Bioenergy, 2014, 67, 223-230.	2.9	35
60	Converting probabilistic tree species range shift projections into meaningful classes for management. Journal of Environmental Management, 2014, 134, 153-165.	3.8	21
61	Balancing Decisions for Adaptive and Multipurpose Conversion of Norway Spruce (<i>Picea abies</i> L.) Tj ETQq1	1.0.78431 0.5	l4rgBT /Cve
62	Quantification of basal friction for technical and silvicultural glide-snow avalanche mitigation measures. Natural Hazards and Earth System Sciences, 2014, 14, 2921-2931.	1.5	26
63	Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 2013, 3, 203-207.	8.1	744
64	Storm damage of Douglas-fir unexpectedly high compared to Norway spruce. Annals of Forest Science, 2013, 70, 195-207.	0.8	40
65	Updating beliefs and combining evidence in adaptive forest management under climate change: A case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany. Journal of Environmental Management, 2013, 122, 56-64.	3.8	31
66	Management Strategies to Adapt Alpine Space Forests to Climate Change Risks – An Introduction to the Manfred Project. , 2013, , .		1
67	Managing Alpine Forests in a Changing Climate. , 2013, , .		5
68	Der Klimawandel als Herausforderung für die Forstwirtschaft: Wissenschaftliche Klimamodelle, Unsicherheit und die Suche nach Entscheidungsunterstützungs-Systemen f¼r die Forstpraxis. , 2013, , 33-52.		1
69	Climate Change: Believing and Seeing Implies Adapting. PLoS ONE, 2012, 7, e50182.	1.1	143
70	A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Annals of Forest Science, 2012, 69, 1-15.	0.8	165
71	How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. European Journal of Forest Research, 2012, 131, 229-247.	1.1	123
72	Extracting environmentally driven growth trends from diameter increment series based on a multiplicative decomposition model. Canadian Journal of Forest Research, 2011, 41, 1577-1589.	0.8	17

#	Article	IF	CITATIONS
73	Assessing natural hazards in forestry for risk management: a review. European Journal of Forest Research, 2011, 130, 329-351.	1.1	138
74	Recent approaches to model the risk of storm and fire. Forest Systems, 2011, 3, 30.	0.1	2
75	Evaluating the Suitability of Management Strategies of Pure Norway Spruce Forests in the Black Forest Area of Southwest Germany for Adaptation to or Mitigation of Climate Change. Environmental Management, 2010, 45, 387-402.	1.2	41
76	Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. Forest Ecology and Management, 2010, 259, 710-719.	1.4	69
77	An inventory-based approach for modeling single-tree storm damage— experiences with the winter storm of 1999 in southwestern Germany. Canadian Journal of Forest Research, 2010, 40, 1636-1652.	0.8	112
78	Modelling of forest conversion planning with an adaptive simulation-optimization approach and simultaneous consideration of the values of timber, carbon and biodiversity. Ecological Economics, 2009, 68, 1711-1722.	2.9	51
79	Predicting constant decay rates of coarse woody debris—A meta-analysis approach with a mixed model. Ecological Modelling, 2009, 220, 904-912.	1.2	86
80	Seventy-sevenÂyears of natural disturbances in a mountain forest area — the influence of storm, snow, and insect damage analysed with a long-term time series . Canadian Journal of Forest Research, 2008, 38, 2249-2261.	0.8	81
81	A forest management risk insurance model and its application to coniferous stands in southwest Germany. Forest Policy and Economics, 2006, 8, 161-174.	1.5	60
82	Neural networks for assessing the risk of windthrow on the forest division level: a case study in southwest Germany. European Journal of Forest Research, 2005, 124, 243-249.	1.1	26
83	Spatial patterns in mixed coniferous even-aged, uneven-aged and conversion stands. European Journal of Forest Research, 2004, 123, 139.	1.1	15
84	A neural network approach to identify forest stands susceptible to wind damage. Forest Ecology and Management, 2004, 196, 227-243.	1.4	53
85	Financial optimisation of target diameter harvest of European beech (Fagus sylvatica) considering the risk of decrease of timber quality due to red heartwood. Forest Policy and Economics, 2004, 6, 579-593.	1.5	17
86	Comparative economic investigations of even-aged and uneven-aged silvicultural systems: a critical analysis of different methods. Forestry, 2002, 75, 473-481.	1.2	39
87	Economic aspects of the transformation from even-aged pure stands of Norway spruce to uneven-aged mixed stands of Norway spruce and beech. Forest Ecology and Management, 2001, 151, 181-193.	1.4	43
88	Financial Results of Selection Forest Enterprises with High Proportions of Valuable Timber – Results of an Empirical Study and their Application. Schweizerische Zeitschrift Fur Forstwesen, 2001, 152, 343-349.	0.5	10
89	Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L.) Tj ETQq1 1 0.7	784314 rg 1.4	BT/Overlock

90 Description of Case Study Areas for Deriving Management Strategies to Adapt Alpine Space Forests to Climate Change Risks. , 0, , .

IF

CITATIONS

ARTICLE

91 Potential Future Ranges of Tree Species in the Alps. , 0, , .