
Claudia Espro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9135142/publications.pdf Version: 2024-02-01

CIALIDIA ESDO

#	Article	IF	CITATIONS
1	A novel yttria-doped ZrO2 based conductometric sensor for hydrogen leak monitoring. International Journal of Hydrogen Energy, 2022, 47, 9819-9828.	7.1	19
2	Glycerol Valorization towards a Benzoxazine Derivative through a Milling and Microwave Sequential Strategy. Molecules, 2022, 27, 632.	3.8	3
3	On the Electroanalytical Detection of Zn Ions by a Novel Schiff Base Ligand-SPCE Sensor. Sensors, 2022, 22, 900.	3.8	19
4	Efficient and stable titania-based nanocatalytic materials for the reductive amination of furfural. Materials Today Chemistry, 2022, 24, 100873.	3.5	4
5	Titanium Surface Modification for Implantable Medical Devices with Anti-Bacterial Adhesion Properties. Materials, 2022, 15, 3283.	2.9	19
6	Recent Advances on Graphene Quantum Dots as Multifunctional Nanoplatforms for Cancer Treatment. Biotechnology Journal, 2021, 16, e1900422.	3.5	40
7	Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chemical Society Reviews, 2021, 50, 11191-11207.	38.1	94
8	The Limonene Biorefinery: From Extractive Technologies to Its Catalytic Upgrading into p-Cymene. Catalysts, 2021, 11, 387.	3.5	10
9	Mechanochemical Preparation of Magnetically Separable Fe and Cu-Based Bimetallic Nanocatalysts for Vanillin Production. Nanomaterials, 2021, 11, 1050.	4.1	2
10	Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. Nanomaterials, 2021, 11, 1120.	4.1	59
11	Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers, 2021, 13, 3194.	3.7	39
12	Orange peels-derived hydrochar for chemical sensing applications. Sensors and Actuators B: Chemical, 2021, 341, 130016.	7.8	25
13	Re-thinking organic synthesis: Mechanochemistry as a greener approach. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100478.	5.9	23
14	Electrochemical and Fluorescent Properties of Crown Ether Functionalized Graphene Quantum Dots for Potassium and Sodium Ions Detection. Nanomaterials, 2021, 11, 2897.	4.1	25
15	Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. Applied Sciences (Switzerland), 2021, 11, 10983.	2.5	20
16	MgNi2O3 nanoparticles as novel and versatile sensing material for non-enzymatic electrochemical sensing of glucose and conductometric determination of acetone. Journal of Alloys and Compounds, 2020, 817, 152787.	5.5	21
17	Photo-electrochemical properties of CuO–TiO ₂ heterojunctions for glucose sensing. Journal of Materials Chemistry C, 2020, 8, 9529-9539.	5.5	25
18	Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100374.	5.9	27

CLAUDIA ESPRO

#	Article	IF	CITATIONS
19	Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. Journal of Electroanalytical Chemistry, 2020, 873, 114354.	3.8	52
20	High performance Gd-doped Î ³ -Fe2O3 based acetone sensor. Materials Science in Semiconductor Processing, 2020, 116, 105154.	4.0	22
21	Photochemical Activation of Non-enzymatic Sensors Based on Cu/TiO2. Lecture Notes in Electrical Engineering, 2020, , 195-200.	0.4	0
22	NdFeO3 as a new electrocatalytic material for the electrochemical monitoring of dopamine. Analytical and Bioanalytical Chemistry, 2019, 411, 7681-7688.	3.7	17
23	Catalytic Processes for The Valorization of Biomass Derived Molecules. Catalysts, 2019, 9, 674.	3.5	4
24	Bioethanol Production from Unpretreated Cellulose under Neutral Selfsustainable Hydrolysis/Hydrogenolysis Conditions Promoted by the Heterogeneous Pd/Fe ₃ O ₄ Catalyst. ACS Omega, 2019, 4, 352-357.	3.5	25
25	A New Class of MnCeOx Materials for the Catalytic Gas Exhausts Emission Control: A Study of the CO Model Compound Oxidation. Topics in Catalysis, 2019, 62, 259-265.	2.8	10
26	Nonâ€enzymatic Glucose Sensor Based on Nickel/Carbon Composite. Electroanalysis, 2018, 30, 727-733.	2.9	48
27	Hydrogenolysis of sorbitol into valuable C3-C2 alcohols at low H2 pressure promoted by the heterogeneous Pd/Fe3O4 catalyst. Molecular Catalysis, 2018, 446, 152-160.	2.0	43
28	A definitive assessment of the CO oxidation pattern of a nanocomposite MnCeO _x catalyst. Reaction Chemistry and Engineering, 2018, 3, 293-300.	3.7	17
29	Tribological Behavior of Nanocomposites Based on UHMWPE Aged in Simulated Synovial Fluid. Polymers, 2018, 10, 1291.	4.5	23
30	Nanostructured Nickel on Porous Carbon-Silica Matrix as an Efficient Electrocatalytic Material for a Non-Enzymatic Glucose Sensor. Chemosensors, 2018, 6, 54.	3.6	16
31	Catalytic Transfer Hydrogenolysis as an Effective Tool for the Reductive Upgrading of Cellulose, Hemicellulose, Lignin, and Their Derived Molecules. Catalysts, 2018, 8, 313.	3.5	58
32	Effect of Ethyl Ester L-Lysine Triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 308-317.	3.1	32
33	In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Mikrochimica Acta, 2017, 184, 2375-2385.	5.0	48
34	Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes. Environmental Science and Pollution Research, 2017, 24, 14735-14747.	5.3	45
35	Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite. Engineering, 2017, 3, 55-59.	6.7	17
36	Probing the functionality of nanostructured MnCeO x catalysts in the carbon monoxide oxidation. Applied Catalysis B: Environmental, 2017, 210, 14-22.	20.2	52

CLAUDIA ESPRO

#	Article	IF	CITATIONS
37	Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation. Applied Catalysis B: Environmental, 2017, 218, 803-809.	20.2	25
38	Wear behaviour of UHMWPE reinforced by carbon nanofiller and paraffin oil for joint replacement. Materials Science and Engineering C, 2017, 73, 234-244.	7.3	64
39	Upgrading Lignocellulosic Biomasses: Hydrogenolysis of Platform Derived Molecules Promoted by Heterogeneous Pd-Fe Catalysts. Catalysts, 2017, 7, 78.	3.5	42
40	Selective arene production from transfer hydrogenolysis of benzyl phenyl ether promoted by a co-precipitated Pd/Fe ₃ O ₄ catalyst. Catalysis Science and Technology, 2016, 6, 7937-7941.	4.1	76
41	Physical - mechanical characterization of poly(lactide)/poly (ε-caprolactone) blends with ethyl ester L-lysine triisocyanate as reactive agent. AIP Conference Proceedings, 2016, , .	0.4	0
42	On the formation of cinnamyl alcohol during the hydrogenation of cinnamaldehyde under mild conditions on supported palladium catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 223-233.	1.7	8
43	Polyester resin and carbon nanotubes based nanocomposite as new-generation coating to prevent biofilm formation. International Journal of Polymer Analysis and Characterization, 2016, 21, 327-336.	1.9	18
44	Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Catalysis Science and Technology, 2015, 5, 4466-4473.	4.1	37
45	Nanostructured MnO x catalysts in the liquid phase selective oxidation of benzyl alcohol with oxygen: Part I. Effects of Ce and Fe addition on structure and reactivity. Applied Catalysis B: Environmental, 2015, 162, 260-267.	20.2	63
46	Effect of Sn doping on microstructural and optical properties of ZnO nanoparticles synthesized by microwave irradiation method. Journal of Materials Science, 2014, 49, 1776-1784.	3.7	27
47	Selective oxidation of CO in hydrogen atmosphere on Pt–Fe catalysts supported on zeolite P-based materials. Journal of Porous Materials, 2014, 21, 623-631.	2.6	6
48	Brassica biodiesels: Past, present and future. Renewable and Sustainable Energy Reviews, 2013, 18, 350-389.	16.4	36
49	H2 production by methane decomposition: Catalytic and technological aspects. International Journal of Hydrogen Energy, 2012, 37, 16367-16374.	7.1	41
50	CH4 decomposition on Ni and Co thin layer catalysts to produce H2 for fuel cell. Catalysis Today, 2011, 171, 60-66.	4.4	19
51	Innovative membrane based process for the selective oxidation of light alkanes assisted by the Fenton system. Asia-Pacific Journal of Chemical Engineering, 2010, 5, 66-72.	1.5	5
52	Methane decomposition over Co thin layer supported catalysts to produce hydrogen for fuel cell. International Journal of Hydrogen Energy, 2010, 35, 11568-11575.	7.1	36
53	Enhancing effect of S and F moieties on the performance of Fenton system in the selective oxidation of propane. Catalysis Today, 2009, 141, 306-310.	4.4	2
54	Doped Ni Thin Layer Catalysts for Catalytic Decomposition of Natural Gas to produce hydrogen. Applied Catalysis A: General, 2009, 365, 122-129.	4.3	16

CLAUDIA ESPRO

#	Article	IF	CITATIONS
55	Catalytic decomposition of natural gas for COx-free hydrogen production in a structured multilayer reactor. Applied Catalysis A: General, 2009, 357, 58-65.	4.3	18
56	Catalytic Features of Mg Modified Ni/SiO2/Silica Cloth Systems in the Decomposition of Methane for Making "CO x -Free〕H2. Catalysis Letters, 2008, 124, 7-12.	2.6	12
57	Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst. Catalysis Today, 2008, 137, 17-22.	4.4	96
58	Ni Thin Layer Catalysts for Making H2 "COx-Free―by Decomposition of Natural Gas in a Structured Multilayer Reactor. Studies in Surface Science and Catalysis, 2006, , 633-640.	1.5	7
59	Selective oxidation of propane on Nafion/PEEK-WC catalytic membranes in a multifunctional reaction system. Catalysis Today, 2006, 118, 253-258.	4.4	16
60	Factors affecting the efficiency of Nafion-based catalytic membranes in the selective oxidation of light paraffins mediated by the Fenton system. Catalysis Today, 2004, 91-92, 215-218.	4.4	9
61	Innovative Membrane-Based Catalytic Process for Environmentally Friendly Synthesis of Oxygenates. Topics in Catalysis, 2003, 22, 65-70.	2.8	6
62	On the potential of the multifunctional three phase catalytic membrane reactor in the selective oxidation of light alkanes by Fe2+–H2O2 Fenton system. Catalysis Today, 2001, 67, 247-256.	4.4	11
63	Partial oxidation of propane on Nafion supported catalytic membranes. Catalysis Today, 2000, 61, 37-41.	4.4	9
64	Selective oxidation of propane on a Nafion-based catalytic membrane mediated by Fell–H2O2 Fenton system. Journal of Molecular Catalysis A, 2000, 159, 359-364.	4.8	12
65	Partial Oxidation of Light Paraffins on Supported Superacid Catalytic Membranes. Studies in Surface Science and Catalysis, 1998, 119, 447-452.	1.5	2