Guo-Chang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9135092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycolate production by a Chlamydomonas reinhardtii mutant lacking carbon-concentrating mechanism. Journal of Biotechnology, 2021, 335, 39-46.	3.8	7
2	Xylose assimilation enhances the production of isobutanol in engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2020, 117, 372-381.	3.3	43
3	Review on D-Allulose: In vivo Metabolism, Catalytic Mechanism, Engineering Strain Construction, Bio-Production Technology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 26.	4.1	40
4	Deletion of <i>JEN1</i> and <i>ADY2</i> reduces lactic acid yield from an engineered <i>Saccharomyces cerevisiae</i> , in xylose medium, expressing a heterologous lactate dehydrogenase. FEMS Yeast Research, 2019, 19, .	2.3	15
5	Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nature Communications, 2019, 10, 1356.	12.8	31
6	Bioprocessing and technoeconomic feasibility analysis of simultaneous production of d-psicose and ethanol using engineered yeast strain KAM-2GD. Bioresource Technology, 2019, 275, 27-34.	9.6	14
7	Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae. Scientific Reports, 2018, 8, 2613.	3.3	62
8	A Mutation in <i>PGM2</i> Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii. Applied and Environmental Microbiology, 2018, 84, .	3.1	21
9	Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 387-395.	3.0	13
10	Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metabolic Engineering, 2017, 40, 176-185.	7.0	27
11	Enhanced isoprenoid production <scp>f</scp> rom xylose by engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2017, 114, 2581-2591.	3.3	68
12	Short communication: Conversion of lactose and whey into lactic acid by engineered yeast. Journal of Dairy Science, 2017, 100, 124-128.	3.4	28
13	Recycling Carbon Dioxide during Xylose Fermentation by Engineered <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2017, 6, 276-283.	3.8	60
14	Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Biotechnology and Bioengineering, 2016, 113, 2587-2596.	3.3	47
15	Lactic acid production from cellobiose and xylose by engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2016, 113, 1075-1083.	3.3	31
16	Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 175-215.	1.1	13
17	Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose. Journal of Biotechnology, 2016, 234, 99-104.	3.8	20
18	GroE chaperonins assisted functional expression of bacterial enzymes in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2016, 113, 2149-2155.	3.3	24

GUO-CHANG ZHANG

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Metabolic Engineering of Probiotic Saccharomyces boulardii. Applied and Environmental Microbiology, 2016, 82, 2280-2287.	3.1	68
21	Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresource Technology, 2015, 191, 512-519.	9.6	52
22	Deletion of <i>PHO13</i> , Encoding Haloacid Dehalogenase Type IIA Phosphatase, Results in Upregulation of the Pentose Phosphate Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015, 81, 1601-1609.	3.1	60
23	Rapid and markerâ€free refactoring of xyloseâ€fermenting yeast strains with Cas9/CRISPR. Biotechnology and Bioengineering, 2015, 112, 2406-2411.	3.3	63
24	Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Current Opinion in Chemical Biology, 2015, 29, 49-57.	6.1	77
25	Construction of a Quadruple Auxotrophic Mutant of an Industrial Polyploid Saccharomyces cerevisiae Strain by Using RNA-Guided Cas9 Nuclease. Applied and Environmental Microbiology, 2014, 80, 7694-7701.	3.1	131
26	Decreased Xylitol Formation during Xylose Fermentation in Saccharomyces cerevisiae Due to Overexpression of Water-Forming NADH Oxidase. Applied and Environmental Microbiology, 2012, 78, 1081-1086.	3.1	44