List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9134859/publications.pdf Version: 2024-02-01

WEN-LING HONG

#	Article	IF	CITATIONS
1	Non-covalent interaction-based molecular electronics with graphene electrodes. Nano Research, 2023, 16, 5436-5446.	10.4	8
2	In Situ Monitoring of Transmetallation in Electric Potential-Promoted Oxidative Coupling in a Single-Molecule Junction. CCS Chemistry, 2023, 5, 191-199.	7.8	7
3	The Control of Intramolecular Through-Bond and Through-Space Coupling in Single-Molecule Junctions. CCS Chemistry, 2022, 4, 713-721.	7.8	17
4	Quantum interference enhanced thermopower in single-molecule thiophene junctions. Chinese Chemical Letters, 2022, 33, 523-526.	9.0	5
5	Room-Temperature Single-Molecule Conductance Switch via Confined Coordination-Induced Spin-State Manipulation. CCS Chemistry, 2022, 4, 1357-1365.	7.8	15
6	Tracking Confined Reaction Based on Host–Guest Interaction Using Singleâ€Molecule Conductance Measurement. Small, 2022, 18, e2104554.	10.0	11
7	Substitution pattern controlled charge transport in BN-embedded aromatics-based single molecule junctions. Physical Chemistry Chemical Physics, 2022, 24, 2227-2233.	2.8	5
8	Regulation strategies based on quantum interference in electrical transport of single-molecule devices. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 067303.	0.5	1
9	Charge transport through single-molecule bilayer-graphene junctions with atomic thickness. Chemical Science, 2022, 13, 5854-5859.	7.4	9
10	The fabrication, characterization and functionalization in molecular electronics. International Journal of Extreme Manufacturing, 2022, 4, 022003.	12.7	23
11	Investigation of electronic excited states in single-molecule junctions. Nano Research, 2022, 15, 5726-5745.	10.4	7
12	Single-Molecule Charge Transport through Thiazole-End-Capped Conjugated Oligomers: Synergistic Au–N and Auâ~'Ĩ€ Interactions and Controllable Self-Decoupled Properties. Journal of Physical Chemistry C, 2022, 126, 6420-6426.	3.1	6
13	The Evolution of the Charge Transport Mechanism in Singleâ€Molecule Break Junctions Revealed by Flicker Noise Analysis. Small, 2022, 18, e2107220.	10.0	9
14	Transport Modulation Through Electronegativity Gating in Multiple Nitrogenous Circuits. Small, 2022, 18, e2200361.	10.0	1
15	Strain of Supramolecular Interactions in Singleâ \in Stacking Junctions. Angewandte Chemie, 2022, 134, .	2.0	4
16	Dual Modulation of Single Molecule Conductance via Tuning Side Chains and Electric Field with Conjugated Molecules Entailing Intramolecular O••S Interactions. Advanced Science, 2022, 9, e210566	7. ^{11.2}	6
17	Strain of Supramolecular Interactions in Singleâ€&tacking Junctions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
18	<i>In situ</i> lattice tuning of quasi-single-crystal surfaces for continuous electrochemical modulation. Chemical Science, 2022, 13, 7765-7772.	7.4	8

#	Article	IF	CITATIONS
19	Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions. Journal of the American Chemical Society, 2022, 144, 10042-10052.	13.7	18
20	Room-temperature logic-in-memory operations in single-metallofullerene devices. Nature Materials, 2022, 21, 917-923.	27.5	47
21	Determination of Ag[I] and NADH Using Single-Molecule Conductance Ratiometric Probes. ACS Sensors, 2021, 6, 461-469.	7.8	20
22	Towards Responsive <scp>Singleâ€Molecule</scp> Device. Chinese Journal of Chemistry, 2021, 39, 421-439.	4.9	7
23	Synthesis and molecular properties of isomeric thienoisoindigo. Journal of Materials Chemistry C, 2021, 9, 13218-13225.	5.5	4
24	Modulation of charge transport through single-molecule bilactam junctions by tuning hydrogen bonds. Chemical Communications, 2021, 57, 1935-1938.	4.1	11
25	Electric field-induced switching among multiple conductance pathways in single-molecule junctions. Chemical Communications, 2021, 57, 7160-7163.	4.1	8
26	Preparation and Application of Microelectrodes at the Singleâ€Molecule Scale. Chemistry - an Asian Journal, 2021, 16, 253-260.	3.3	1
27	Electrostatic gating of single-molecule junctions based on the STM-BJ technique. Nanoscale, 2021, 13, 7600-7605.	5.6	16
28	Control of quantum interference in single-molecule junctions via Jahn-Teller distortion. Cell Reports Physical Science, 2021, 2, 100329.	5.6	12
29	Effective suppression of conductance in multichannel molecular wires. Cell Reports Physical Science, 2021, 2, 100342.	5.6	8
30	Spectral Clustering to Analyze the Hidden Events in Single-Molecule Break Junctions. Journal of Physical Chemistry C, 2021, 125, 3623-3630.	3.1	28
31	Application of Micro/Nanofabrication Techniques to Onâ€Chip Molecular Electronics. Small Methods, 2021, 5, e2001034.	8.6	16
32	Singleâ€Molecule Electrochemical Transistors. Advanced Materials, 2021, 33, e2005883.	21.0	41
33	Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. Journal of the American Chemical Society, 2021, 143, 8476-8487.	13.7	25
34	Guiding Students to Understand the Nanoscale Charge Transport by the Mechanically Controllable Break Junction Technique. Journal of Chemical Education, 2021, 98, 2430-2439.	2.3	2
35	Reversible Switching between Destructive and Constructive Quantum Interference Using Atomically Precise Chemical Gating of Single-Molecule Junctions. Journal of the American Chemical Society, 2021, 143, 9385-9392.	13.7	50
36	An Enhanced Electrode via Coupling with a Conducting Molecule to Extend Interfacial Reactions. Advanced Energy Materials, 2021, 11, 2101156.	19.5	11

#	Article	IF	CITATIONS
37	Single Dynamic Covalent Bond Tailored Responsive Molecular Junctions. Angewandte Chemie, 2021, 133, 21040-21046.	2.0	0
38	Heteroatom Effects on Quantum Interference in Molecular Junctions: Modulating Antiresonances by Molecular Design. Journal of Physical Chemistry C, 2021, 125, 17385-17391.	3.1	10
39	Sub-nanometer supramolecular rectifier based on the symmetric building block with destructive Ïf-interference. Science China Chemistry, 2021, 64, 1426-1433.	8.2	8
40	Single Dynamic Covalent Bond Tailored Responsive Molecular Junctions. Angewandte Chemie - International Edition, 2021, 60, 20872-20878.	13.8	27
41	Promotion and suppression of single-molecule conductance by quantum interference in macrocyclic circuits. Matter, 2021, , .	10.0	12
42	The influence of water on the charge transport through self-assembled monolayers junctions fabricated by EGaln technique. Electrochimica Acta, 2021, 398, 139304.	5.2	5
43	Visualization of the intermediates in organic catalytic reaction by single-molecule electrical spectroscopy. CheM, 2021, 7, 2275-2276.	11.7	1
44	Editorial: Feature Representation and Learning Methods With Applications in Protein Secondary Structure. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748722.	4.1	7
45	Single-atom control of electrical conductance and thermopower through single-cluster junctions. Nanoscale, 2021, 13, 12594-12601.	5.6	6
46	Mechanical single-molecule potentiometers with large switching factors from ortho-pentaphenylene foldamers. Nature Communications, 2021, 12, 167.	12.8	39
47	Single-molecule conductance variations of up to four orders of magnitude <i>via</i> contacting electrodes with different anchoring sites. Journal of Materials Chemistry C, 2021, 9, 16192-16198.	5.5	7
48	Singleâ€Molecule Chargeâ€Transport Modulation Induced by Steric Effects of Side Alkyl Chains. ChemPhysChem, 2021, 22, 2573-2578.	2.1	5
49	Conformation and Quantum-Interference-Enhanced Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives. ACS Sensors, 2021, 6, 470-476.	7.8	10
50	The Characterization of Electronic Noise in the Charge Transport through Singleâ€Molecule Junctions. Small Methods, 2021, 5, e2001064.	8.6	9
51	Capturing the Rotation of One Molecular Crank by Single-Molecule Conductance. Nano Letters, 2021, 21, 9729-9735.	9.1	10
52	Simultaneous Electrical and Mechanical Characterization of Single-Molecule Junctions Using AFM-BJ Technique. ACS Omega, 2021, 6, 30873-30888.	3.5	14
53	Charge transport through a water-assisted hydrogen bond in single-molecule glutathione disulfide junctions. Journal of Materials Chemistry C, 2020, 8, 481-486.	5.5	9
54	Automatic classification of single-molecule charge transport data with an unsupervised machine-learning algorithm. Physical Chemistry Chemical Physics, 2020, 22, 1674-1681.	2.8	26

#	Article	IF	CITATIONS
55	Electric-Field-Induced Connectivity Switching in Single-Molecule Junctions. IScience, 2020, 23, 100770.	4.1	34
56	Structureâ€Independent Conductance of Thiopheneâ€Based Singleâ€ S tacking Junctions. Angewandte Chemie, 2020, 132, 3306-3312.	2.0	10
57	Structureâ€Independent Conductance of Thiopheneâ€Based Singleâ€Stacking Junctions. Angewandte Chemie - International Edition, 2020, 59, 3280-3286.	13.8	58
58	Transferâ€learningâ€based Raman spectra identification. Journal of Raman Spectroscopy, 2020, 51, 176-186.	2.5	43
59	Identifying the Conformational Isomers of Single-Molecule Cyclohexane at Room Temperature. CheM, 2020, 6, 2770-2781.	11.7	40
60	Exploring the thermoelectric properties of oligo(phenylene-ethynylene) derivatives. Nanoscale, 2020, 12, 15150-15156.	5.6	14
61	Single-Molecule Plasmonic Optical Trapping. Matter, 2020, 3, 1350-1360.	10.0	53
62	Interfacial assembly of self-healing and mechanically stable hydrogels for degradation of organic dyes in water. Communications Materials, 2020, 1, .	6.9	10
63	Electric Field-Induced Assembly in Single-Stacking Terphenyl Junctions. Journal of the American Chemical Society, 2020, 142, 19101-19109.	13.7	61
64	Model Predictive Control Guided Reinforcement Learning Control Scheme. , 2020, , .		8
65	Nonadditive Transport in Multiâ€Channel Singleâ€Molecule Circuits. Small, 2020, 16, e2002808.	10.0	8
66	Selective Fabrication of Singleâ€Molecule Junctions by Interface Engineering. Small, 2020, 16, e2004720.	10.0	20
67	Understanding the Role of Parallel Pathways via Inâ€5itu Switching of Quantum Interference in Molecular Tunneling Junctions. Angewandte Chemie - International Edition, 2020, 59, 14308-14312.	13.8	32
68	Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Science Advances, 2020, 6, eaba6714.	10.3	42
69	Understanding the Role of Parallel Pathways via Inâ€5itu Switching of Quantum Interference in Molecular Tunneling Junctions. Angewandte Chemie, 2020, 132, 14414-14418.	2.0	3
70	Solvent-molecule interaction induced gating of charge transport through single-molecule junctions. Science Bulletin, 2020, 65, 944-950.	9.0	16
71	Giant Conductance Enhancement of Intramolecular Circuits through Interchannel Gating. Matter, 2020, 2, 378-389.	10.0	43
72	Coenzyme Coupling Boosts Charge Transport through Single Bioactive Enzyme Junctions. IScience, 2020, 23, 101001.	4.1	16

#	Article	IF	CITATIONS
73	Enhancing single-molecule conductance of platinum(II) complexes through synergistic aromaticity-assisted structural asymmetry. Science China Chemistry, 2020, 63, 467-474.	8.2	9
74	Enhanced charge transport <i>via</i> d(Î)–p(Ï€) conjugation in Mo ₂ -integrated single-molecule junctions. Nanoscale, 2020, 12, 10320-10327.	5.6	10
75	Constructive Quantum Interference in Singleâ€Molecule Benzodichalcogenophene Junctions. Chemistry - A European Journal, 2020, 26, 5264-5269.	3.3	7
76	Application of electrochemistry to single-molecule junctions: from construction to modulation. Science China Chemistry, 2019, 62, 1333-1345.	8.2	8
77	Singleâ€Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angewandte Chemie - International Edition, 2019, 58, 14534-14538.	13.8	27
78	Singleâ€Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angewandte Chemie, 2019, 131, 14676-14680.	2.0	7
79	Gas transport regulation in a MO/MOF interface for enhanced selective gas detection. Journal of Materials Chemistry A, 2019, 7, 18397-18403.	10.3	44
80	Analytical modeling of the junction evolution in single-molecule break junctions: towards quantitative characterization of the time-dependent process. Science China Chemistry, 2019, 62, 1245-1256.	8.2	9
81	Charge Transport through Peptides in Singleâ€Molecule Electrical Measurements. Chinese Journal of Chemistry, 2019, 37, 1083-1096.	4.9	10
82	Stable and Biocompatible Cellulose-Based CaCO ₃ Microspheres for Tunable pH-Responsive Drug Delivery. ACS Sustainable Chemistry and Engineering, 2019, 7, 19824-19831.	6.7	24
83	Turning the Tap: Conformational Control of Quantum Interference to Modulate Singleâ€Molecule Conductance. Angewandte Chemie - International Edition, 2019, 58, 18987-18993.	13.8	42
84	Turning the Tap: Conformational Control of Quantum Interference to Modulate Singleâ€Molecule Conductance. Angewandte Chemie, 2019, 131, 19163-19169.	2.0	12
85	Quantum Interference Enhanced Chemical Responsivity in Singleâ€Molecule Dithienoborepin Junctions. Chemistry - A European Journal, 2019, 25, 15141-15146.	3.3	18
86	Bioinspired genetic engineering of supramolecular assembled formate dehydrogenase with enhanced biocatalysis activities. Journal of Biotechnology, 2019, 292, 50-56.	3.8	3
87	Multicenterâ€Bondâ€Based Quantum Interference in Charge Transport Through Singleâ€Molecule Carborane Junctions. Angewandte Chemie, 2019, 131, 10711-10715.	2.0	11
88	Electric field–induced selective catalysis of single-molecule reaction. Science Advances, 2019, 5, eaaw3072.	10.3	161
89	Experimental investigation of quantum interference in charge transport through molecular architectures. Journal of Materials Chemistry C, 2019, 7, 12790-12808.	5.5	40
90	Multicenterâ€Bondâ€Based Quantum Interference in Charge Transport Through Singleâ€Molecule Carborane Junctions. Angewandte Chemie - International Edition, 2019, 58, 10601-10605.	13.8	59

#	Article	IF	CITATIONS
91	Modularized Tuning of Charge Transport through Highly Twisted and Localized Single-Molecule Junctions. Journal of Physical Chemistry Letters, 2019, 10, 3453-3458.	4.6	22
92	Modulation of the conductance in platinum(<scp>ii</scp>) bis(acetylide) molecules through "gating― metal ions. Journal of Materials Chemistry C, 2019, 7, 7259-7266.	5.5	12
93	Atomically defined angstrom-scale all-carbon junctions. Nature Communications, 2019, 10, 1748.	12.8	44
94	Phosphindole fused pyrrolo[3,2- <i>b</i>]pyrroles: a new single-molecule junction for charge transport. Dalton Transactions, 2019, 48, 6347-6352.	3.3	16
95	Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nature Materials, 2019, 18, 364-369.	27.5	198
96	Lightâ€Driven Reversible Intermolecular Proton Transfer at Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2019, 58, 3829-3833.	13.8	60
97	Lightâ€Driven Reversible Intermolecular Proton Transfer at Singleâ€Molecule Junctions. Angewandte Chemie, 2019, 131, 3869-3873.	2.0	15
98	Room-temperature quantum interference in single perovskite quantum dot junctions. Nature Communications, 2019, 10, 5458.	12.8	20
99	Exploring antiaromaticity in single-molecule junctions formed from biphenylene derivatives. Nanoscale, 2019, 11, 20659-20666.	5.6	26
100	Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions. Topics in Current Chemistry Collections, 2019, , 87-105.	0.5	2
101	Transition from Tunneling Leakage Current to Molecular Tunneling in Single-Molecule Junctions. CheM, 2019, 5, 390-401.	11.7	56
102	Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application. Accounts of Chemical Research, 2019, 52, 151-160.	15.6	132
103	Distinguishing Diketopyrrolopyrrole Isomers in Single-Molecule Junctions via Reversible Stimuli-Responsive Quantum Interference. Journal of the American Chemical Society, 2018, 140, 6531-6535.	13.7	78
104	Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chemical Science, 2018, 9, 5033-5038.	7.4	60
105	Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 10437-10444.	8.0	175
106	Quantum interference effect in the charge transport through single-molecule benzene dithiol junction at room temperature: An experimental investigation. Chinese Chemical Letters, 2018, 29, 147-150.	9.0	17
107	A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(<scp>ii</scp>) ion active electrolyte. Physical Chemistry Chemical Physics, 2018, 20, 131-136.	2.8	41
108	Towards single-molecule optoelectronic devices. Science China Chemistry, 2018, 61, 1368-1384.	8.2	36

#	Article	IF	CITATIONS
109	Probing Lewis acid–base interactions in single-molecule junctions. Nanoscale, 2018, 10, 18131-18134.	5.6	17
110	An important step towards single-molecule reaction dynamics. Science China Chemistry, 2018, 61, 761-762.	8.2	1
111	Heteroatom-Induced Molecular Asymmetry Tunes Quantum Interference in Charge Transport through Single-Molecule Junctions. Journal of Physical Chemistry C, 2018, 122, 14965-14970.	3.1	46
112	Gating of Quantum Interference in Molecular Junctions by Heteroatom Substitution. Angewandte Chemie - International Edition, 2017, 56, 173-176.	13.8	120
113	Surfactant-free Pd–Fe nanoparticles supported on reduced graphene oxide as nanocatalyst for formic acid oxidation. International Journal of Hydrogen Energy, 2017, 42, 15196-15202.	7.1	30
114	Electrochemical control of the single molecule conductance of a conjugated bis(pyrrolo)tetrathiafulvalene based molecular switch. Chemical Science, 2017, 8, 6123-6130.	7.4	31
115	Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nature Communications, 2017, 8, 15436.	12.8	106
116	Tuning Charge Transport Properties of Asymmetric Molecular Junctions. Journal of Physical Chemistry C, 2017, 121, 12885-12894.	3.1	36
117	Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions. Topics in Current Chemistry, 2017, 375, 42.	5.8	8
118	Gating of Quantum Interference in Molecular Junctions by Heteroatom Substitution. Angewandte Chemie, 2017, 129, 179-182.	2.0	22
119	Switching of Charge Transport Pathways via Delocalization Changes in Single-Molecule Metallacycles Junctions. Journal of the American Chemical Society, 2017, 139, 14344-14347.	13.7	59
120	Protonation tuning of quantum interference in azulene-type single-molecule junctions. Chemical Science, 2017, 8, 7505-7509.	7.4	58
121	Radicalâ€Enhanced Charge Transport in Singleâ€Molecule Phenothiazine Electrical Junctions. Angewandte Chemie - International Edition, 2017, 56, 13061-13065.	13.8	66
122	Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Research, 2017, 10, 3314-3323.	10.4	9
123	Radicalâ€Enhanced Charge Transport in Singleâ€Molecule Phenothiazine Electrical Junctions. Angewandte Chemie, 2017, 129, 13241-13245.	2.0	18
124	One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation. Nanoscale Research Letters, 2017, 12, 521.	5.7	18
125	Quantum interference and heteroaromaticity of para- and meta-linked bridged biphenyl units in single molecular conductance measurements. Scientific Reports, 2017, 7, 1794.	3.3	59
126	Conductance in a bis-terpyridine based single molecular breadboard circuit. Chemical Science, 2017, 8, 1576-1591.	7.4	25

#	Article	IF	CITATIONS
127	Design, crystal structure and atomic force microscopy study of thioether ligated <scp>d</scp> , <scp>l</scp> -cyclic antimicrobial peptides against multidrug resistant Pseudomonas aeruginosa. Chemical Science, 2017, 8, 7464-7475.	7.4	24
128	Molecular Conductance through a Quadrupleâ€Hydrogenâ€Bondâ€Bridged Supramolecular Junction. Angewandte Chemie, 2016, 128, 12581-12585.	2.0	11
129	Molecular Conductance through a Quadrupleâ€Hydrogenâ€Bondâ€Bridged Supramolecular Junction. Angewandte Chemie - International Edition, 2016, 55, 12393-12397.	13.8	53
130	Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions. Electrochimica Acta, 2016, 200, 268-275.	5.2	27
131	A New Approach to Materials Discovery for Electronic and Thermoelectric Properties of Single-Molecule Junctions. Nano Letters, 2016, 16, 1308-1316.	9.1	41
132	Threeâ€State Singleâ€Molecule Naphthalenediimide Switch: Integration of a Pendant Redox Unit for Conductance Tuning. Angewandte Chemie - International Edition, 2015, 54, 13586-13589.	13.8	49
133	Break junction under electrochemical gating: testbed for single-molecule electronics. Chemical Society Reviews, 2015, 44, 889-901.	38.1	205
134	Charge Transport in C ₆₀ -Based Dumbbell-type Molecules: Mechanically Induced Switching between Two Distinct Conductance States. Journal of the American Chemical Society, 2015, 137, 2318-2327.	13.7	41
135	Electrochemical Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Correlating Structural Information and Adsorption Processes of Pyridine at the Au(hkl) Single Crystal/Solution Interface. Journal of the American Chemical Society, 2015, 137, 2400-2408.	13.7	93
136	Exploitation of desilylation chemistry in tailor-made functionalization on diverse surfaces. Nature Communications, 2015, 6, 6403.	12.8	29
137	A quantum circuit rule for interference effects in single-molecule electrical junctions. Nature Communications, 2015, 6, 6389.	12.8	164
138	Magic Ratios for Connectivity-Driven Electrical Conductance of Graphene-like Molecules. Journal of the American Chemical Society, 2015, 137, 4469-4476.	13.7	101
139	Controlling Electrical Conductance through a π onjugated Cruciform Molecule by Selective Anchoring to Gold Electrodes. Angewandte Chemie - International Edition, 2015, 54, 14304-14307.	13.8	40
140	Searching the Hearts of Graphene-like Molecules for Simplicity, Sensitivity, and Logic. Journal of the American Chemical Society, 2015, 137, 11425-11431.	13.7	84
141	Electrochemical Control of Single-Molecule Conductance by Fermi-Level Tuning and Conjugation Switching. Journal of the American Chemical Society, 2014, 136, 17922-17925.	13.7	119
142	Highly-effective gating of single-molecule junctions: an electrochemical approach. Chemical Communications, 2014, 50, 15975-15978.	4.1	53
143	The Synthesis of Functionalised Diaryltetraynes and Their Transport Properties in Singleâ€Molecule Junctions. Chemistry - A European Journal, 2014, 20, 4653-4660.	3.3	44
144	Promising anchoring groups for single-molecule conductance measurements. Physical Chemistry Chemical Physics, 2014, 16, 23529-23539.	2.8	106

#	Article	IF	CITATIONS
145	Electrochemical control of a non-covalent binding between ferrocene and beta-cyclodextrin. Chemical Communications, 2014, 50, 11757-11759.	4.1	22
146	Single-Molecule Conductance of Functionalized Oligoynes: Length Dependence and Junction Evolution. Journal of the American Chemical Society, 2013, 135, 12228-12240.	13.7	277
147	Oligo(aryleneethynylene)s with Terminal Pyridyl Groups: Synthesis and Length Dependence of the Tunneling-to-Hopping Transition of Single-Molecule Conductances. Chemistry of Materials, 2013, 25, 4340-4347.	6.7	110
148	Batch fabrication of gold–gold nanogaps by E-beam lithography and electrochemical deposition. Nanotechnology, 2013, 24, 235302.	2.6	12
149	<scp>C</scp> harge transport through perylene bisimide molecular junctions: An electrochemical approach. Physica Status Solidi (B): Basic Research, 2013, 250, 2458-2467.	1.5	25
150	Electron transport through catechol-functionalized molecular rods. Electrochimica Acta, 2013, 110, 709-717.	5.2	11
151	Charge Transport in Photoswitchable Dimethyldihydropyrene-Type Single-Molecule Junctions. Journal of the American Chemical Society, 2013, 135, 5974-5977.	13.7	142
152	Trimethylsilyl-Terminated Oligo(phenylene ethynylene)s: An Approach to Single-Molecule Junctions with Covalent Au–C σ-Bonds. Journal of the American Chemical Society, 2012, 134, 19425-19431.	13.7	163
153	Single Molecular Conductance of Tolanes: Experimental and Theoretical Study on the Junction Evolution Dependent on the Anchoring Group. Journal of the American Chemical Society, 2012, 134, 2292-2304.	13.7	381
154	Correlations between Molecular Structure and Single-Junction Conductance: A Case Study with Oligo(phenylene-ethynylene)-Type Wires. Journal of the American Chemical Society, 2012, 134, 5262-5275.	13.7	279
155	An MCBJ case study: The influence of ï€-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein Journal of Nanotechnology, 2011, 2, 699-713.	2.8	157
156	Three-dimensional echocardiographic virtual endoscopy for the diagnosis of congenital heart disease in children. International Journal of Cardiovascular Imaging, 2010, 26, 851-859.	1.5	8
157	Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors. Journal of Physical Chemistry C, 2010, 114, 1822-1826.	3.1	389
158	Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 2009, 47, 3538-3543.	10.3	671
159	Fluorescence detection of mercury ions in aqueous media with the complex of a cationic oligopyrene derivative and oligothymine. Analyst, The, 2009, 134, 2081.	3.5	28
160	A simple approach for the discrimination of nucleotides based on a water-soluble polythiophene derivative. Chemical Communications, 2009, , 4696.	4.1	74
161	Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions. Journal of the American Chemical Society, 2009, 131, 13490-13497.	13.7	497
162	Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1555-1558.	4.7	802

0

#	Article	IF	CITATIONS
163	Drying Enhanced Adhesion of Polythiophene Nanotubule Arrays on Smooth Surfaces. ACS Nano, 2008, 2, 2342-2348.	14.6	52

164 Wavelet-network-based predictive model in combustion process of CFBB. , 2007, , .