Yuan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9134480/publications.pdf

Version: 2024-02-01

304602 233338 4,774 45 51 22 citations h-index g-index papers 56 56 56 6237 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2018, 2, 158-164.	11.6	1,114
2	Deep learning-enabled medical computer vision. Npj Digital Medicine, 2021, 4, 5.	5.7	469
3	A deep learning system for differential diagnosis of skin diseases. Nature Medicine, 2020, 26, 900-908.	15.2	356
4	How to Read Articles That Use Machine Learning. JAMA - Journal of the American Medical Association, 2019, 322, 1806.	3.8	329
5	Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. American Journal of Surgical Pathology, 2018, 42, 1636-1646.	2.1	323
6	Artificial Intelligence–Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for Pathologists. Archives of Pathology and Laboratory Medicine, 2019, 143, 859-868.	1.2	240
7	An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nature Medicine, 2019, 25, 1453-1457.	15.2	179
8	How to develop machine learning models for healthcare. Nature Materials, 2019, 18, 410-414.	13.3	178
9	Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation. Radiology, 2020, 294, 421-431.	3.6	167
10	Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE, 2020, 15, e0233678.	1.1	143
11	Detection of anaemia from retinal fundus images via deep learning. Nature Biomedical Engineering, 2020, 4, 18-27.	11.6	130
12	Predicting the risk of developing diabetic retinopathy using deep learning. The Lancet Digital Health, 2021, 3, e10-e19.	5.9	127
13	Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens. JAMA Oncology, 2020, 6, 1372.	3.4	119
14	Interpretable survival prediction for colorectal cancer using deep learning. Npj Digital Medicine, 2021, 4, 71.	5.7	95
15	Charting the Landscape of Tandem BRCT Domain–Mediated Protein Interactions. Science Signaling, 2012, 5, rs6.	1.6	88
16	Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. The Lancet Digital Health, 2022, 4, e235-e244.	5.9	82
17	LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures. Bioinformatics, 2009, 25, 1431-1432.	1.8	68
18	Development and Assessment of an Artificial Intelligence–Based Tool for Skin Condition Diagnosis by Primary Care Physicians and Nurse Practitioners in Teledermatology Practices. JAMA Network Open, 2021, 4, e217249.	2.8	61

#	Article	IF	Citations
19	Whole-Slide Image Focus Quality: Automatic Assessment and Impact on Al Cancer Detection. Journal of Pathology Informatics, 2019, 10, 39.	0.8	58
20	Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies. JAMA Network Open, 2020, 3, e2023267.	2.8	56
21	Determining breast cancer biomarker status and associated morphological features using deep learning. Communications Medicine, 2021, 1, .	1.9	53
22	Detection of signs of disease in external photographs of the eyes via deep learning. Nature Biomedical Engineering, 2022, 6, 1370-1383.	11.6	31
23	Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading. Communications Medicine, $2021,1,\ldots$	1.9	24
24	Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning. JAMA Ophthalmology, 2021, 139, 964.	1.4	23
25	Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19. Scientific Reports, 2021, 11, 15523.	1.6	22
26	Deep Learning to Detect OCT-derived Diabetic Macular Edema from Color Retinal Photographs. Ophthalmology Retina, 2022, 6, 398-410.	1.2	22
27	Detection of elusive polyps using a large-scale artificial intelligence system (with videos). Gastrointestinal Endoscopy, 2021, 94, 1099-1109.e10.	0.5	21
28	Evaluation of artificial intelligence on a reference standard based on subjective interpretation. The Lancet Digital Health, 2021, 3, e693-e695.	5.9	21
29	Beatquency domain and machine learning improve prediction of cardiovascular death after acute coronary syndrome. Scientific Reports, 2016, 6, 34540.	1.6	20
30	Improved eIF4E Binding Peptides by Phage Display Guided Design: Plasticity of Interacting Surfaces Yield Collective Effects. PLoS ONE, 2012, 7, e47235.	1.1	19
31	Remote Tool-Based Adjudication for Grading Diabetic Retinopathy. Translational Vision Science and Technology, 2019, 8, 40.	1.1	17
32	ECG Morphological Variability in Beat Space for Risk Stratification After Acute Coronary Syndrome. Journal of the American Heart Association, 2014, 3, e000981.	1.6	16
33	Reply to: Transparency and reproducibility in artificial intelligence. Nature, 2020, 586, E17-E18.	13.7	13
34	Yeast two-hybrid junk sequences contain selected linear motifs. Nucleic Acids Research, 2011, 39, e128-e128.	6.5	12
35	Longitudinal Screening for Diabetic Retinopathy in a Nationwide Screening Program: Comparing Deep Learning and Human Graders. Journal of Diabetes Research, 2020, 2020, 1-8.	1.0	10
36	Redesigning Clinical Pathways for Immediate Diabetic Retinopathy Screening Results. NEJM Catalyst, 2021, 2, .	0.4	9

#	Article	IF	CITATIONS
37	Improving reference standards for validation of Al-based radiography. British Journal of Radiology, 2021, 94, 20210435.	1.0	8
38	Role of the N-terminal lid in regulating the interaction of phosphorylated MDMX with p53. Oncotarget, 2017, 8, 112825-112840.	0.8	8
39	Prospective validation of smartphone-based heart rate and respiratory rate measurement algorithms. Communications Medicine, 2022, 2, .	1.9	7
40	Artificial Intelligence Approach in Melanoma. , 2019, , 599-628.		5
41	Artificial Intelligence Approach in Melanoma. , 2019, , 1-31.		5
42	Retinal detection of kidney disease and diabetes. Nature Biomedical Engineering, 2021, 5, 487-489.	11.6	5
43	Systematic mutational analysis of an ubiquitin ligase (MDM2)-binding peptide: computational studies. Theoretical Chemistry Accounts, 2011, 130, 1145-1154.	0.5	4
44	Artificial intelligence, machine learning and deep learning for eye care specialists. Annals of Eye Science, 0, 5, 18-18.	1.1	4
45	Reply: †The importance of study design in the application of artificial intelligence methods in medicine'. Npj Digital Medicine, 2019, 2, 100.	5.7	2
46	Measuring clinician–machine agreement in differential diagnoses for dermatology. British Journal of Dermatology, 2020, 182, 1277-1278.	1.4	2
47	Al papers in ophthalmology made simple. Eye, 2020, 34, 1947-1949.	1.1	2
48	Reply. Ophthalmology, 2020, 127, e58-e59.	2.5	0
49	Lessons learnt from harnessing deep learning for real-world clinical applications in ophthalmology: detecting diabetic retinopathy from retinal fundus photographs. , 2021, , 247-264.		0
50	Race- and Ethnicity-Stratified Analysis of an Artificial Intelligence–Based Tool for Skin Condition Diagnosis by Primary Care Physicians and Nurse Practitioners. Iproceedings, 2022, 8, e36885.	0.1	0
51	Machine learning for clinical operations improvement via case triaging. Skin Health and Disease, 2022, 2, .	0.7	0