Paul Braun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9134475/paul-braun-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

213	13,714	57	114
papers	citations	h-index	g-index
229	15,357 ext. citations	11.7	6.66
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
213	Biomimetic and Biologically Compliant Soft Architectures via 3D and 4D Assembly Methods: A Perspective <i>Advanced Materials</i> , 2022 , e2108391	24	5
212	A Lipid-Inspired Highly Adhesive Interface for Durable Superhydrophobicity in Wet Environments and Stable Jumping Droplet Condensation <i>ACS Nano</i> , 2022 ,	16.7	2
211	A Lamellar Yolk-Shell Lithium-Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance. <i>Advanced Science</i> , 2021 , 9, e2103517	13.6	7
2 10	Ultralow Thermal Conductivity in Nanoporous Crystalline Fe3O4. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6897-6908	3.8	3
209	Direct and Divergent Solid-Phase Synthesis of Azobenzene and Spiropyran Derivatives. <i>Journal of Organic Chemistry</i> , 2021 , 86, 4391-4397	4.2	O
208	High Energy Density and Stable Three-Dimensionally Structured Se-Loaded Bicontinuous Porous Carbon Battery Electrodes. <i>Energy Technology</i> , 2021 , 9, 2100175	3.5	4
207	Measuring Molecular Diffusion Through Thin Polymer Films with Dual-Band Plasmonic Antennas. <i>ACS Nano</i> , 2021 , 15, 10393-10405	16.7	2
206	Electrodeposition of atmosphere-sensitive ternary sodium transition metal oxide films for sodium-based electrochemical energy storage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
205	Revealing the role of the cathode-electrolyte interface on solid-state batteries. <i>Nature Materials</i> , 2021 , 20, 1392-1400	27	36
204	Phase Change Material Heat Sink for Transient Cooling of High-Power Devices. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 170, 121033	4.9	11
203	Good Solid-State Electrolytes Have Low, Glass-Like Thermal Conductivity. <i>Small</i> , 2021 , 17, e2101693	11	8
202	A Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries. <i>Advanced Materials</i> , 2021 , 33, e2101760	24	2
201	High-Performance Packaged 3D Lithium-Ion Microbatteries Fabricated Using Imprint Lithography. <i>Advanced Materials</i> , 2021 , 33, e2006229	24	20
200	Improved synthesis of TiCT MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. <i>Nanoscale</i> , 2021 , 13, 3572-3580	7.7	59
199	Three-dimensional mesostructured binder-free nickel-based TiO2/RGO lithium-ion battery negative electrodes with enhanced volumetric capacity. <i>Ceramics International</i> , 2021 , 47, 21381-21387	5.1	2
198	Toward the realization of subsurface volumetric integrated optical systems. <i>Applied Physics Letters</i> , 2021 , 119, 130503	3.4	0
197	A Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries (Adv. Mater. 35/2021). <i>Advanced Materials</i> , 2021 , 33, 2170275	24	

(2020-2021)

196	Linear and nonlinear viscoelasticity of concentrated thermoresponsive microgel suspensions. Journal of Colloid and Interface Science, 2021 , 601, 886-898	9.3	4	
195	Kirigami-Inspired Self-Assembly of 3D Structures. <i>Advanced Functional Materials</i> , 2020 , 30, 1909888	15.6	16	
194	A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy. <i>Applied Physics Letters</i> , 2020 , 116, 071901	3.4	12	
193	Archimedean lattices emerge in template-directed eutectic solidification. <i>Nature</i> , 2020 , 577, 355-358	50.4	11	
192	Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology. <i>Science Advances</i> , 2020 , 6, eaay4508	14.3	14	
191	Force-Modulated Equilibria of MechanophoreMetal Coordinate Bonds. <i>Chemistry of Materials</i> , 2020 , 32, 3869-3878	9.6	6	
190	Optically anisotropic porous silicon microlenses with tunable refractive indexes and birefringence profiles. <i>Optical Materials Express</i> , 2020 , 10, 868	2.6	5	
189	Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. <i>Lab on A Chip</i> , 2020 , 20, 84-92	7.2	34	
188	Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based Fibers and Their Application in High-Performance Supercapacitors. <i>ACS Nano</i> , 2020 , 14, 632-639	16.7	24	
187	Mechanical Deformation Assisted Fabrication of Plasmonic Nanobowties with Broken Symmetry and Tunable Gaps. <i>Particle and Particle Systems Characterization</i> , 2020 , 37, 1900463	3.1	1	
186	Functional materials and devices by self-assembly. MRS Bulletin, 2020, 45, 799-806	3.2	11	
185	Direct laser writing of volumetric gradient index lenses and waveguides. <i>Light: Science and Applications</i> , 2020 , 9, 196	16.7	27	
184	Autonomic Molecular Transport for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 3929-3935	4.3	3	
183	Polymer Composites Containing Phase-Change Microcapsules Displaying Deep Undercooling Exhibit Thermal History-Dependent Mechanical Properties. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000286	6.8	8	
182	Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 27906-27915	11.5	35	
181	Microcapsules: Polymer Composites Containing Phase-Change Microcapsules Displaying Deep Undercooling Exhibit Thermal History-Dependent Mechanical Properties (Adv. Mater. Technol. 10/2020). <i>Advanced Materials Technologies</i> , 2020 , 5, 2070062	6.8		
180	Exploiting Nonlinear Elasticity for Anomalous Magnetoresponsive Stiffening. <i>ACS Macro Letters</i> , 2020 , 9, 1632-1637	6.6	1	
179	Real-Time Measurement of Polymer Brush Dynamics Using Silicon Photonic Microring Resonators: Analyte Partitioning and Interior Brush Kinetics. <i>Langmuir</i> , 2020 , 36, 10351-10360	4	О	

178	An Integrated Liquid Metal Thermal Switch for Active Thermal Management of Electronics. <i>IEEE Transactions on Components, Packaging and Manufacturing Technology,</i> 2019 , 9, 2341-2351	1.7	14
177	Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions. <i>Soft Matter</i> , 2019 , 15, 1038-1052	3.6	29
176	High strength metallic wood from nanostructured nickel inverse opal materials. <i>Scientific Reports</i> , 2019 , 9, 719	4.9	28
175	Acid-Triggered, Acid-Generating, and Self-Amplifying Degradable Polymers. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2838-2842	16.4	25
174	Modulating Noncovalent Cross-links with Molecular Switches. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3597-3604	16.4	24
173	Effects of Particle Size on Mg Ion Intercalation into EMnO Cathode Materials. <i>Nano Letters</i> , 2019 , 19, 4712-4720	11.5	26
172	Metallic 1T phase MoS2/MnO composites with improved cyclability for lithium-ion battery anodes. Journal of Alloys and Compounds, 2019 , 796, 25-32	5.7	12
171	Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. <i>Nature Communications</i> , 2019 , 10, 1896	17.4	150
170	Reversible Conversion Reactions and Small First Cycle Irreversible Capacity Loss in Metal Sulfide-Based Electrodes Enabled by Solid Electrolytes. <i>Advanced Functional Materials</i> , 2019 , 29, 19017	1 9 5.6	15
169	High Volumetric and Gravimetric Capacity Electrodeposited Mesostructured Sb O Sodium Ion Battery Anodes. <i>Small</i> , 2019 , 15, e1900258	11	34
168	Trimethylsilyl Azide (TMSN3) Enhanced LiD2 Battery Electrolytes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2662-2671	6.1	5
167	Light-triggered thermal conductivity switching in azobenzene polymers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5973-5978	11.5	56
166	Thermoresponsive Stiffening with Microgel Particles in a Semiflexible Fibrin Network. <i>Macromolecules</i> , 2019 , 52, 3029-3041	5.5	6
165	Effect of Surface Chemistry and Roughness on the High-Temperature Deposition of a Model Asphaltene. <i>Energy & Deposition of a Model Asphaltene</i> . <i>Energy & Deposition of a Model Asphaltene</i> . <i>Energy & Deposition of a Model Asphaltene</i> .	4.1	1
164	Innentitelbild: Selective Autonomous Molecular Transport and Collection by Hydrogel-Embedded Supramolecular Chemical Gradients (Angew. Chem. 50/2019). <i>Angewandte Chemie</i> , 2019 , 131, 18046-18	3046	
163	Carbon-Free, High-Capacity and Long Cycle Life 1D-2D NiMoO Nanowires/Metallic 1T MoS Composite Lithium-Ion Battery Anodes. <i>ACS Applied Materials & Discourse Sense</i> , 2019, 11, 44593-44600	9.5	10
162	Selective Autonomous Molecular Transport and Collection by Hydrogel-Embedded Supramolecular Chemical Gradients. <i>Angewandte Chemie</i> , 2019 , 131, 18333-18338	3.6	4
161	Selective Autonomous Molecular Transport and Collection by Hydrogel-Embedded Supramolecular Chemical Gradients. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18165-18170	16.4	5

(2018-2019)

160	Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. <i>Nature Biomedical Engineering</i> , 2019 , 3, 194-205	19	144
159	A bee pupa-infilled honeycomb structure-inspired LiMnSiO cathode for high volumetric energy density secondary batteries. <i>Chemical Communications</i> , 2019 , 55, 3582-3585	5.8	2
158	Field Emitters Using Inverse Opal Structures. Advanced Functional Materials, 2019, 29, 1808571	15.6	8
157	Control of lamellar eutectic orientation via template-directed solidification. <i>Acta Materialia</i> , 2019 , 166, 715-722	8.4	2
156	Low-Temperature Pack Aluminization Process on Pipeline Steel To Inhibit Asphaltene Deposition. <i>ACS Applied Materials & Deposition</i> , 11, 47596-47605	9.5	2
155	Rational Design of Hierarchically Open-Porous Spherical Hybrid Architectures for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1802816	21.8	32
154	Soft Three-Dimensional Microscale Vibratory Platforms for Characterization of Nano-Thin Polymer Films. <i>ACS Nano</i> , 2019 , 13, 449-457	16.7	16
153	Reconfigurable nanoscale soft materials. <i>Current Opinion in Solid State and Materials Science</i> , 2019 , 23, 41-49	12	7
152	Tunable Antireflection Coating to Remove Index-Matching Requirement for Interference Lithography. <i>Advanced Optical Materials</i> , 2018 , 6, 1701049	8.1	12
151	Template-Directed Solidification of Eutectic Optical Materials. Advanced Optical Materials, 2018, 6, 1800	0 8 .71	15
150	Pack Aluminization Assisted Enhancement of Thermo-mechanical Properties in Nickel Inverse Opal Structures. <i>Chemistry of Materials</i> , 2018 , 30, 1648-1654	9.6	10
149	Millimeter-scale liquid metal droplet thermal switch. <i>Applied Physics Letters</i> , 2018 , 112, 063505	3.4	25
148	Thin Film Condensation on Nanostructured Surfaces. Advanced Functional Materials, 2018, 28, 1707000	15.6	42
147	Enhanced cycle stability of iron(II, III) oxide nanoparticles encapsulated with nitrogen-doped carbon and graphene frameworks for lithium battery anodes. <i>Carbon</i> , 2018 , 129, 621-630	10.4	22
146	Deterministic Design of Chemistry and Mesostructure in Li-Ion Battery Electrodes. <i>ACS Nano</i> , 2018 , 12, 3060-3064	16.7	15
145	Flexible Binder-Free CuS/Polydopamine-Coated Carbon Cloth for High Voltage Supercapacitors. <i>Energy Technology</i> , 2018 , 6, 1852-1858	3.5	8
144	Directed Molecular Collection by E-Jet Printed Microscale Chemical Potential Wells in Hydrogel Films. <i>Advanced Materials</i> , 2018 , 30, e1803140	24	5
143	Processing-Dependent Microstructure of AgCltsAgCl2 Eutectic Photonic Crystals. <i>Advanced Optical Materials</i> , 2018 , 6, 1701316	8.1	5

142	Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1804133	15.6	105
141	Optical Waveguides: Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon (Adv. Mater. 32/2018). <i>Advanced Materials</i> , 2018 , 30, 1870239	24	1
140	Self-Folded Gripper-Like Architectures from Stimuli-Responsive Bilayers. <i>Advanced Materials</i> , 2018 , 30, e1801669	24	41
139	Electrochemical Fabrication of Flat, Polymer-Embedded Porous Silicon 1D Gradient Refractive Index Microlens Arrays. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1800088	1.6	1
138	Dendritic nanostructured FeS-based high stability and capacity Li-ion cathodes <i>RSC Advances</i> , 2018 , 8, 38745-38750	3.7	2
137	Colloidal Metal-Organic Framework Hexapods Prepared from Postsynthesis Etching with Enhanced Catalytic Activity and Rollable Packing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40990-40995	9.5	14
136	Synthesis and Formation Mechanism of All-Organic Block Copolymer-Directed Templating of Laser-Induced Crystalline Silicon Nanostructures. <i>ACS Applied Materials & Discours & Disco</i>	7:427	88
135	Salt Water-Triggered Ionic Cross-Linking of Polymer Composites by Controlled Release of Functional Ions. <i>ACS Omega</i> , 2018 , 3, 16127-16133	3.9	
134	Amplified Detection of Chemical Warfare Agents Using Two-Dimensional Chemical Potential Gradients. <i>ACS Omega</i> , 2018 , 3, 14665-14670	3.9	8
133	High Energy Density CNT/Nal Composite Cathodes for Sodium-Ion Batteries. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801342	4.6	4
132	Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon. <i>Advanced Materials</i> , 2018 , 30, e1801584	24	36
131	High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. <i>Nature Communications</i> , 2018 , 9, 2578	17.4	85
130	Integration of colloids into a semi-flexible network of fibrin. Soft Matter, 2017, 13, 1430-1443	3.6	6
129	Tunable Visibly Transparent Optics Derived from Porous Silicon. ACS Photonics, 2017, 4, 909-914	6.3	27
128	High and low thermal conductivity of amorphous macromolecules. <i>Physical Review B</i> , 2017 , 95,	3.3	61
127	Polymer Brush-Modified Microring Resonators for Partition-Enhanced Small Molecule Chemical Detection. <i>ChemistrySelect</i> , 2017 , 2, 1521-1524	1.8	2
126	Cationically Substituted BiFeOCl Nanosheets as Li Ion Battery Anodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 14187-14196	9.5	20
125	Dynamic Gradient Directed Molecular Transport and Concentration in Hydrogel Films. <i>Angewandte Chemie</i> , 2017 , 129, 5083-5088	3.6	6

124	Electroplating lithium transition metal oxides. Science Advances, 2017, 3, e1602427	14.3	45
123	Note: Qualitative degradation of the pesticide coumaphos in solution, controlled aerosol, and solid phases on quaternary ammonium fluoride polymer brushes. <i>Polymers for Advanced Technologies</i> , 2017 , 28, 567-567	3.2	O
122	Flexible and Wearable Fiber Microsupercapacitors Based on Carbon Nanotube-Agarose Gel Composite Electrodes. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	25
121	Tin Sulfide-Based Nanohybrid for High-Performance Anode of Sodium-Ion Batteries. <i>Small</i> , 2017 , 13, 1700767	11	25
120	Dynamic Gradient Directed Molecular Transport and Concentration in Hydrogel Films. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5001-5006	16.4	11
119	Synergistically Enhanced Electrochemical Performance of Hierarchical MoS/TiNbO Hetero-nanostructures as Anode Materials for Li-Ion Batteries. <i>ACS Nano</i> , 2017 , 11, 1026-1033	16.7	80
118	High-Operating-Temperature Direct Ink Writing of Mesoscale Eutectic Architectures. <i>Advanced Materials</i> , 2017 , 29, 1604778	24	28
117	Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9455-E9464	11.5	104
116	Low-Temperature Hydrothermal Synthesis of Colloidal Crystal Templated Nanostructured Single-Crystalline ZnO. <i>Chemistry of Materials</i> , 2017 , 29, 9734-9741	9.6	8
115	A programmable soft chemo-mechanical actuator exploiting a catalyzed photochemical water-oxidation reaction. <i>Soft Matter</i> , 2017 , 13, 7312-7317	3.6	12
114	Reduced Graphene Oxide/Lil Composite Lithium Ion Battery Cathodes. <i>Nano Letters</i> , 2017 , 17, 6893-68	99 1.5	41
113	Resonant Mode Engineering of Photonic Crystal Sensors Clad with Ultralow Refractive Index Porous Silicon Dioxide. <i>Advanced Optical Materials</i> , 2017 , 5, 1700605	8.1	21
112	Bifurcation of self-folded polygonal bilayers. <i>Applied Physics Letters</i> , 2017 , 111, 104101	3.4	9
111	Improved Performance in FeF2 Conversion Cathodes through Use of a Conductive 3D Scaffold and Al2O3 ALD Coating. <i>Advanced Functional Materials</i> , 2017 , 27, 1702783	15.6	38
110	Electrodeposited high strength, thermally stable spectrally selective rhenium nickel inverse opals. <i>Nanoscale</i> , 2017 , 9, 11187-11194	7.7	12
109	Qualitative degradation of the pesticide coumaphos in solution, controlled aerosol, and solid phases on quaternary ammonium fluoride polymer brushes. <i>Polymers for Advanced Technologies</i> , 2017 , 28, 73-79	3.2	O
108	Lithium-Ion Batteries: Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes (Adv. Mater. 35/2016). <i>Advanced Materials</i> , 2016 , 28, 7695-7695	24	3
107	Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes. Advanced Materials, 2016 , 28, 7696-70	024	68

106	Porous Silicon Gradient Refractive Index Micro-Optics. <i>Nano Letters</i> , 2016 , 16, 7402-7407	11.5	21
105	High-Performance Mesostructured Organic Hybrid Pseudocapacitor Electrodes. <i>Advanced Functional Materials</i> , 2016 , 26, 903-910	15.6	52
104	High Volumetric Capacity Three-Dimensionally Sphere-Caged Secondary Battery Anodes. <i>Nano Letters</i> , 2016 , 16, 4501-7	11.5	58
103	Three-Dimensional Single Gyroid Photonic Crystals with a Mid-Infrared Bandgap. <i>ACS Photonics</i> , 2016 , 3, 1131-1137	6.3	40
102	3D Scaffolded Nickel-Tin Li-Ion Anodes with Enhanced Cyclability. <i>Advanced Materials</i> , 2016 , 28, 742-7	24	80
101	Bioresorbable silicon electronic sensors for the brain. <i>Nature</i> , 2016 , 530, 71-6	50.4	582
100	Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. <i>Journal of Power Sources</i> , 2016 , 315, 308-315	8.9	21
99	Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals. <i>Nano Letters</i> , 2016 , 16, 2754-61	11.5	65
98	3D Holographic Photonic Crystals Containing Embedded Functional Features. <i>Advanced Optical Materials</i> , 2016 , 4, 1533-1540	8.1	9
97	Thermal Conductivity of Graphite Thin Films Grown by Low Temperature Chemical Vapor Deposition on Ni (111). <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600234	4.6	24
96	Programmable shape transformation of elastic spherical domes. <i>Soft Matter</i> , 2016 , 12, 6184-95	3.6	21
95	Heteroepitaxial Growth of GaN on Unconventional Templates and Layer-Transfer Techniques for Large-Area, Flexible/Stretchable Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2016 , 4, 505-521	8.1	20
94	Thermally Functional Liquid Crystal Networks by Magnetic Field Driven Molecular Orientation. <i>ACS Macro Letters</i> , 2016 , 5, 955-960	6.6	47
93	Unveiling surface redox charge storage of interacting two-dimensional heteronanosheets in hierarchical architectures. <i>Nano Letters</i> , 2015 , 15, 2269-77	11.5	73
92	Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. <i>ACS Nano</i> , 2015 , 9, 8569-77	16.7	87
91	Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis. <i>Chemistry of Materials</i> , 2015 , 27, 2803-2811	9.6	60
90	Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 9128-33	9.5	30
89	Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing. <i>ACS Photonics</i> , 2015 , 2, 475-480	6.3	70

(2014-2015)

88	Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6573-8	11.5	144
87	Autonomic molecular transport by polymer films containing programmed chemical potential gradients. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5066-73	16.4	26
86	Photonic Crystals: Template-Directed Directionally Solidified 3D Mesostructured AgCl R Cl Eutectic Photonic Crystals (Adv. Mater. 31/2015). <i>Advanced Materials</i> , 2015 , 27, 4550-4550	24	
85	Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy. <i>Journal of Applied Physics</i> , 2015 , 118, 224303	2.5	7
84	Colloidal Particles that Rapidly Change Shape via Elastic Instabilities. Small, 2015, 11, 6051-7	11	21
83	High Full-Electrode Basis Capacity Template-Free 3D Nanocomposite Secondary Battery Anodes. <i>Small</i> , 2015 , 11, 6265-71	11	13
82	In Operando Strain Measurement of Bicontinuous Silicon-Coated Nickel Inverse Opal Anodes for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1500466	21.8	27
81	Enhanced Secondary Battery Anodes Based on Si and Fe3O4 Nanoparticle Infilled Monodisperse Carbon Starburst Colloidal Crystals. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 928-933	3.1	2
80	Template-Directed Directionally Solidified 3D Mesostructured AgCl-KCl Eutectic Photonic Crystals. <i>Advanced Materials</i> , 2015 , 27, 4551-9	24	26
79	Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. <i>ACS Nano</i> , 2015 , 9, 1985-94	16.7	103
78	Repetitive Hole-Mask Colloidal Lithography for the Fabrication of Large-Area Low-Cost Plasmonic Multishape Single-Layer Metasurfaces. <i>Advanced Optical Materials</i> , 2015 , 3, 680-686	8.1	14
77	Nanoscale thermal transport. II. 2003\(\textit{D}\)012. Applied Physics Reviews, 2014 , 1, 011305	17.3	1050
76	Materials Chemistry in 3D Templates for Functional Photonics. <i>Chemistry of Materials</i> , 2014 , 26, 277-286	5 9.6	46
75	Facile fabrication of graphene composite microwires via drying-induced size reduction of hydrogel filaments. <i>RSC Advances</i> , 2014 , 4, 20927-20931	3.7	12
74	Transfer-Printing of Tunable Porous Silicon Microcavities with Embedded Emitters. <i>ACS Photonics</i> , 2014 , 1, 1144-1150	6.3	30
73	Electrode architectures for high capacity multivalent conversion compounds: iron (II and III) fluoride. <i>RSC Advances</i> , 2014 , 4, 6730	3.7	32
72	Hydrothermal fabrication of three-dimensional secondary battery anodes. <i>Advanced Materials</i> , 2014 , 26, 7096-101	24	46
71	Solvent Swelling Activation of a Mechanophore in a Polymer Network. <i>Macromolecules</i> , 2014 , 47, 2690-2	2 <u>6.9</u> 4	78

70	Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. <i>Advanced Materials</i> , 2014 , 26, 5108-12	24	127
69	Micromechanical devices with controllable stiffness fabricated from regular 3D porous materials. Journal of Micromechanics and Microengineering, 2014 , 24, 105006	2	14
68	Polymer brushes patterned with micrometer-scale chemical gradients using laminar co-flow. <i>ACS Applied Materials & District Applied & District &</i>	9.5	12
67	General Method for Forming Micrometer-Scale Lateral Chemical Gradients in Polymer Brushes. <i>Chemistry of Materials</i> , 2014 , 26, 2678-2683	9.6	13
66	Electrochemically tunable thermal conductivity of lithium cobalt oxide. <i>Nature Communications</i> , 2014 , 5, 4035	17.4	92
65	Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 577-86	3	20
64	Epitaxial Growth of Three-Dimensionally Mesostructured Single-Crystalline Cu2O via Templated Electrodeposition. <i>Chemistry of Materials</i> , 2014 , 26, 7051-7058	9.6	13
63	Hydrogel-Based Glucose Sensors: Effects of Phenylboronic Acid Chemical Structure on Response. <i>Chemistry of Materials</i> , 2013 , 25, 3239-3250	9.6	146
62	Enabling New Classes of Templated Materials through Mesoporous Carbon Colloidal Crystals. <i>Advanced Optical Materials</i> , 2013 , 1, 300-304	8.1	14
61	Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. <i>Nature Communications</i> , 2013 , 4, 2630	17.4	166
60	Coherent phonon-grain boundary scattering in silicon inverse opals. <i>Nano Letters</i> , 2013 , 13, 618-24	11.5	33
59	High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. <i>Nature Communications</i> , 2013 , 4, 1732	17.4	449
58	Exploiting Force Sensitive Spiropyrans as Molecular Level Probes. <i>Macromolecules</i> , 2013 , 46, 3746-3752	5.5	109
57	Noninvasive optical glucose monitoring at physiological levels using a functionalized plasmonic sensor 2013 ,		1
56	Programmed size-selected permeation of ssDNA into ZnS mesoporous hollow spheres. <i>Soft Matter</i> , 2012 , 8, 4396	3.6	2
55	Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. <i>Nano Letters</i> , 2012 , 12, 2778-83	11.5	229
54	Triangular Elastomeric Stamps for Optical Applications: Near-Field Phase Shift Photolithography, 3D Proximity Field Patterning, Embossed Antireflective Coatings, and SERS Sensing. <i>Advanced Functional Materials</i> , 2012 , 22, 2927-2938	15.6	41
53	Protein Adsorption Modes Determine Reversible Cell Attachment on Poly(N-isopropyl acrylamide) Brushes. <i>Advanced Functional Materials</i> , 2012 , 22, 2394-2401	15.6	66

(2009-2011)

52	Protein adsorption on poly(N-isopropylacrylamide) brushes: dependence on grafting density and chain collapse. <i>Langmuir</i> , 2011 , 27, 8810-8	4	120
51	Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. <i>Nature Nanotechnology</i> , 2011 , 6, 277-81	28.7	940
50	Epitaxial growth of three-dimensionally architectured optoelectronic devices. <i>Nature Materials</i> , 2011 , 10, 676-81	27	99
49	Transparent Self-Healing Polymers Based on Encapsulated Plasticizers in a Thermoplastic Matrix. <i>Advanced Functional Materials</i> , 2011 , 21, 4705-4711	15.6	64
48	Molecular transport directed via patterned functionalized surfaces. Advanced Materials, 2011, 23, 1739	-4234	6
47	Transfer of Preformed Three-Dimensional Photonic Crystals onto Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2011 , 123, 5830-5833	3.6	21
46	Template directed assembly of dynamic micellar nanoparticles. Soft Matter, 2011, 7, 10252	3.6	6
45	Electrodeposited 3D Tungsten Photonic Crystals with Enhanced Thermal Stability. <i>Chemistry of Materials</i> , 2011 , 23, 4783-4788	9.6	73
44	Interfacial thermal conductance in spun-cast polymer films and polymer brushes. <i>Applied Physics Letters</i> , 2010 , 97, 011908	3.4	79
43	Force-induced redistribution of a chemical equilibrium. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16107-11	16.4	213
42	Cavity-enhanced localized plasmon resonance sensing. <i>Applied Physics Letters</i> , 2010 , 97, 253116	3.4	208
41	Multidimensional architectures for functional optical devices. <i>Advanced Materials</i> , 2010 , 22, 1084-101	24	154
40	Self-Healing Polymer Coatings. <i>Advanced Materials</i> , 2009 , 21, 645-649	24	575
39	Fabrication of Three-Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition. <i>Advanced Materials</i> , 2009 , 21, 3012-3015	24	87
38	Programming structure into 3D nanomaterials. <i>Materials Today</i> , 2009 , 12, 28-35	21.8	35
37	Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. <i>Nature</i> , 2009 , 459, 68-72	50.4	1211
36	Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. <i>Applied Physics Letters</i> , 2009 , 94, 011101	3.4	44
35	Microcapsules containing suspensions of carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6093		87

34	Complex three-dimensional conformal surfaces formed by atomic layer deposition: computation and experimental verification. <i>Journal of Materials Chemistry</i> , 2009 , 19, 9126		18
33	Embedded cavities and waveguides in three-dimensional silicon photonic crystals. <i>Nature Photonics</i> , 2008 , 2, 52-56	33.9	234
32	Enhanced emission from fcc fluorescent photonic crystals. <i>Physical Review B</i> , 2008 , 77,	3.3	11
31	Tuning coherent radiative thermal conductance in multilayer photonic crystals. <i>Applied Physics Letters</i> , 2008 , 92, 103106	3.4	15
30	Are artificial opals non-close-packed fcc structures?. <i>Applied Physics Letters</i> , 2007 , 90, 241905	3.4	17
29	Holographically fabricated photonic crystals with large reflectance. <i>Applied Physics Letters</i> , 2007 , 91, 241103	3.4	29
28	Thermal conductivity of nanoparticle suspensions. <i>Journal of Applied Physics</i> , 2006 , 99, 084308	2.5	217
27	Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1421		71
26	Optical diffraction and high-energy features in three-dimensional photonic crystals. <i>Physical Review B</i> , 2005 , 71,	3.3	82
25	Two-Dimensional Diffusion of Prodan on Self-Assembled Monolayers Studied by Fluorescence Recovery after Photobleaching. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13764-13770	3.4	12
24	Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1242	8 ⁻¹ 3 ⁻³	247
23	Heat capacity measurements of two-dimensional self-assembled hexadecanethiol monolayers on polycrystalline gold. <i>Applied Physics Letters</i> , 2004 , 84, 5198-5200	3.4	34
22	AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18870-18875	3.4	121
21	Nanoparticle-mediated epitaxial assembly of colloidal crystals on patterned substrates. <i>Langmuir</i> , 2004 , 20, 5262-70	4	94
20	Glucose-Sensitive Inverse Opal Hydrogels: Analysis of Optical Diffraction Response. <i>Langmuir</i> , 2004 , 20, 3096-3106	4	213
19	Lyotropic Liquid Crystals as Nanoreactors for Nanoparticle Synthesis. <i>Chemistry of Materials</i> , 2004 , 16, 2201-2207	9.6	68
18	Hydrothermal Synthesis of Er-Doped Luminescent TiO2 Nanoparticles. <i>Chemistry of Materials</i> , 2003 , 15, 1256-1263	9.6	157
17	Bulk Metal and Ceramics Nanocomposites 2003 , 1-75		13

LIST OF PUBLICATIONS

16	Polymer-Based and Polymer-Filled Nanocomposites 2003 , 77-153		62
15	Modeling of Nanocomposites 2003 , 215-222		3
14	Natural Nanobiocomposites, Biomimetic Nanocomposites, and Biologically Inspired Nanocomposites 2003 , 155-214		7
13	Imaging of self-assembly and self-assembled materials. <i>Microscopy and Microanalysis</i> , 2002 , 8, 316-317	0.5	
12	Effects of surface termination on the band gap of ultrabright Si29 nanoparticles: Experiments and computational models. <i>Physical Review B</i> , 2002 , 65,	3.3	39
11	Electrochemical Fabrication of 3D Microperiodic Porous Materials. <i>Advanced Materials</i> , 2001 , 13, 482-48	3 5 .4	77
10	Epitaxial Growth of High Dielectric Contrast Three-Dimensional Photonic Crystals. <i>Advanced Materials</i> , 2001 , 13, 721-724	24	93
9	Molecular Variables in the Self-Assembly of Supramolecular Nanostructures. <i>Macromolecules</i> , 2000 , 33, 3550-3556	5.5	36
8	Electrochemically grown photonic crystals. <i>Nature</i> , 1999 , 402, 603-604	50.4	387
7	Counterion Effects in Liquid Crystal Templating of Nanostructured CdS. <i>Chemistry of Materials</i> , 1997 , 9, 1495-1498	9.6	41
6	Semiconducting superlattices templated by molecular assemblies. <i>Nature</i> , 1996 , 380, 325-328		
	Semiconducting superiorities completed by moterator assembles, value e, 1999, 300, 323 320	50.4	472
5	Interrelationship between Densification, Crystallization, and Chemical Evolution in Sol-Gel Titania Thin Films. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 1592-1596	3.8	47 ² 57
5	Interrelationship between Densification, Crystallization, and Chemical Evolution in Sol-Gel Titania		
	Interrelationship between Densification, Crystallization, and Chemical Evolution in Sol-Gel Titania Thin Films. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 1592-1596 Relationship between Water Desorption and Low-Temperature Densification of Colloidal Anatase	3.8	57
4	Interrelationship between Densification, Crystallization, and Chemical Evolution in Sol-Gel Titania Thin Films. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 1592-1596 Relationship between Water Desorption and Low-Temperature Densification of Colloidal Anatase Thin Films. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 2529-2533	3.8	57 8