
Francesca Lugli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/913413/publications.pdf Version: 2024-02-01

EDANCESCA LUCU

#	Article	IF	CITATIONS
1	Protein aggregation detection with fluorescent macromolecular and nanostructured probes: challenges and opportunities. New Journal of Chemistry, 2021, 45, 14259-14268.	2.8	6
2	Conduction and Gating Properties of the TRAAK Channel from Molecular Dynamics Simulations with Different Force Fields. Journal of Chemical Information and Modeling, 2020, 60, 6532-6543.	5.4	12
3	Dynamic Self-Organization and Catalysis: Periodic versus Random Driving Forces. Journal of Physical Chemistry C, 2019, 123, 825-835.	3.1	3
4	Interaction of Single Cells with 2D Organic Monolayers: A Scanning Electrochemical Microscopy Study. ChemElectroChem, 2018, 5, 2975-2981.	3.4	16
5	Modeling Living Cells Response to Surface Tension and Chemical Patterns. ACS Applied Materials & Interfaces, 2017, 9, 19552-19561.	8.0	11
6	"Active―drops as phantom models for living cells: a mesoscopic particle-based approach. Soft Matter, 2016, 12, 3538-3544.	2.7	3
7	Electrochemical Fabrication of Surface Chemical Gradients in Thiol Self-Assembled Monolayers with Tailored Work-Functions. Langmuir, 2014, 30, 11591-11598.	3.5	13
8	And Yet it Moves! Microfluidics Without Channels and Troughs. Advanced Functional Materials, 2013, 23, 5543-5549.	14.9	22
9	Amyloid-β fibril disruption by C60—molecular guidance for rational drug design. Physical Chemistry Chemical Physics, 2012, 14, 8599.	2.8	56
10	Shape Governs the Motion of Chemically Propelled Janus Swimmers. Journal of Physical Chemistry C, 2012, 116, 592-598.	3.1	47
11	Electric Field Effects on Short Fibrils of $A\hat{I}^2$ Amyloid Peptides. Journal of Chemical Theory and Computation, 2010, 6, 3516-3526.	5.3	39
12	Effects of Electric Field Stress on a β-Amyloid Peptide. Journal of Physical Chemistry B, 2009, 113, 369-376.	2.6	83
13	Atomistic Simulation of "Drop-on-Demand―Inkjet Dynamics. Journal of Physical Chemistry C, 2008, 112, 10616-10621.	3.1	5
14	Molecular Dynamics of Nanobubbles' Collapse in Ionic Solutions. ChemPhysChem, 2007, 8, 47-49.	2.1	13
15	An introduction to bubble dynamics. Physical Chemistry Chemical Physics, 2007, 9, 2447.	2.8	42
16	The Collapse of Nanobubbles in Water. Journal of the American Chemical Society, 2005, 127, 8020-8021.	13.7	31
17	Ring Current Patterns in Annelated Bicyclic Polyenes. Journal of Physical Chemistry A, 2002, 106, 5703-5708.	2.5	22