
Luis Pérez GarcÃ-a Estañ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9134034/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fish Innate Immune Response to Viral Infection—An Overview of Five Major Antiviral Genes. Viruses, 2022, 14, 1546.	3.3	10
2	Antiviral Function of NKEF against VHSV in Rainbow Trout. Biology, 2021, 10, 1045.	2.8	3
3	Immunomodulatory Lectin-like Peptides for Fish Erythrocytes-Targeting as Potential Antiviral Drug Delivery Platforms. International Journal of Molecular Sciences, 2021, 22, 11821.	4.1	2
4	Zebrafish C-reactive protein isoforms inhibit SVCV replication by blocking autophagy through interactions with cell membrane cholesterol. Scientific Reports, 2020, 10, 566.	3.3	23
5	Integrated Transcriptomic and Proteomic Analysis of Red Blood Cells from Rainbow Trout Challenged with VHSV Point Towards Novel Immunomodulant Targets. Vaccines, 2019, 7, 63.	4.4	13
6	Acute phase protein response to viral infection and vaccination. Archives of Biochemistry and Biophysics, 2019, 671, 196-202.	3.0	56
7	Potential Role of Rainbow Trout Erythrocytes as Mediators in the Immune Response Induced by a DNA Vaccine in Fish. Vaccines, 2019, 7, 60.	4.4	12
8	Hydroxycholesterol binds and enhances the anti-viral activities of zebrafish monomeric c-reactive protein isoforms. PLoS ONE, 2019, 14, e0201509.	2.5	11
9	IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells. Frontiers in Immunology, 2019, 10, 613.	4.8	15
10	Rainbow Trout Red Blood Cells Exposed to Viral Hemorrhagic Septicemia Virus Up-Regulate Antigen-Processing Mechanisms and MHC I&II, CD86, and CD83 Antigen-presenting Cell Markers. Cells, 2019, 8, 386.	4.1	21
11	Plasma proteomic analysis of zebrafish following spring viremia of carp virus infection. Fish and Shellfish Immunology, 2019, 86, 892-899.	3.6	10
12	Viral interference between infectious pancreatic necrosis virus and spring viremia of carp virus in zebrafish. Aquaculture, 2019, 500, 370-377.	3.5	6
13	Beta-glucan enhances the response to SVCV infection in zebrafish. Developmental and Comparative Immunology, 2018, 84, 307-314.	2.3	52
14	Chromatin immunoprecipitation and high throughput sequencing of SVCV-infected zebrafish reveals novel epigenetic histone methylation patterns involved in antiviral immune response. Fish and Shellfish Immunology, 2018, 82, 514-521.	3.6	16
15	Discovery of nonnucleoside inhibitors of polymerase from infectious pancreatic necrosis virus (IPNV). Drug Design, Development and Therapy, 2018, Volume 12, 2337-2359.	4.3	10
16	Turbot (Scophthalmus maximus) Nk-lysin induces protection against the pathogenic parasite Philasterides dicentrarchi via membrane disruption. Fish and Shellfish Immunology, 2018, 82, 190-199.	3.6	34
17	Restricted replication of viral hemorrhagic septicemia virus (VHSV) in a birnavirus-carrier cell culture. Archives of Virology, 2017, 162, 1037-1041.	2.1	3
18	Protective immunity against Megalocytivirus infection in rock bream (Oplegnathus fasciatus) following CpG ODN administration. Vaccine, 2017, 35, 3691-3699.	3.8	17

Luis Pérez GarcÃa Estañ

#	Article	IF	CITATIONS
19	Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. Developmental and Comparative Immunology, 2017, 69, 33-40.	2.3	21
20	Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Molecular Immunology, 2017, 91, 145-155.	2.2	19
21	Infectious pancreatic necrosis virus triggers antiviral immune response in rainbow trout red blood cells, despite not being infective. F1000Research, 2017, 6, 1968.	1.6	48
22	Identification of diverse defense mechanisms in trout red blood cells in response to VHSV halted viral replication. F1000Research, 2017, 6, 1958.	1.6	33
23	Identification of diverse defense mechanisms in rainbow trout red blood cells in response to halted replication of VHS virus. F1000Research, 2017, 6, 1958.	1.6	32
24	Piscine birnavirus triggers antiviral immune response in trout red blood cells, despite not being infective. F1000Research, 2017, 6, 1968.	1.6	32
25	Induction of viral interference by IPNV-carrier cells on target cells: AÂcell co-culture study. Fish and Shellfish Immunology, 2016, 58, 483-489.	3.6	4
26	Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules. Autophagy, 2014, 10, 1666-1680.	9.1	73
27	In addition to its antiviral and immunomodulatory properties, the zebrafish β-defensin 2 (zfBD2) is a potent viral DNA vaccine molecular adjuvant. Antiviral Research, 2014, 101, 136-147.	4.1	67
28	Antiviral activity produced by an IPNV-carrier EPC cell culture confers resistance to VHSV infection. Veterinary Microbiology, 2013, 166, 412-418.	1.9	9
29	Increasing Versatility of the DNA Vaccines through Modification of the Subcellular Location of Plasmid-Encoded Antigen Expression in the In Vivo Transfected Cells. PLoS ONE, 2013, 8, e77426.	2.5	6
30	Ex vivo transfection of trout pronephros leukocytes, a model for cell culture screening of fish DNA vaccine candidates. Vaccine, 2012, 30, 5983-5990.	3.8	9
31	In vitro analysis of the factors contributing to the antiviral state induced by a plasmid encoding the viral haemorrhagic septicaemia virus glycoprotein G in transfected trout cells. Vaccine, 2011, 29, 737-743.	3.8	32
32	Characterization of an infectious pancreatic necrosis (IPN) virus carrier cell culture with resistance to superinfection with heterologous viruses. Veterinary Microbiology, 2011, 149, 48-55.	1.9	17
33	Pepscan Mapping of Viral Hemorrhagic Septicemia Virus Glycoprotein G Major Lineal Determinants Implicated in Triggering Host Cell Antiviral Responses Mediated by Type I Interferon. Journal of Virology, 2010, 84, 7140-7150.	3.4	46
34	The immunogenicity of viral haemorragic septicaemia rhabdovirus (VHSV) DNA vaccines can depend on plasmid regulatory sequences. Vaccine, 2009, 27, 1938-1948.	3.8	37
35	The rainbow trout TLR9 gene and its role in the immune responses elicited by a plasmid encoding the glycoprotein G of the viral haemorrhagic septicaemia rhabdovirus (VHSV). Molecular Immunology, 2009, 46, 1710-1717.	2.2	41
36	Antimicrobial Peptides as Model Molecules for the Development of Novel Antiviral Agents in Aquaculture. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1159-1164.	2.4	41

#	Article	IF	CITATIONS
37	Inhibitory effect of mycophenolic acid on the replication of infectious pancreatic necrosis virus and viral hemorrhagic septicemia virus. Antiviral Research, 2008, 80, 332-338.	4.1	19
38	Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Molecular Immunology, 2008, 45, 757-765.	2.2	110
39	In vivo modulation of the rainbow trout (Oncorhynchus mykiss) immune response by the human alpha defensin 1, HNP1. Fish and Shellfish Immunology, 2008, 24, 102-112.	3.6	27
40	In vitro and in vivo differential expression of rainbow trout (Oncorhynchus mykiss) Mx isoforms in response to viral haemorrhagic septicaemia virus (VHSV) G gene, poly I:C and VHSV. Fish and Shellfish Immunology, 2007, 23, 210-221.	3.6	70
41	Dual antiviral activity of human alpha-defensin-1 against viral haemorrhagic septicaemia rhabdovirus (VHSV): Inactivation of virus particles and induction of a type I interferon-related response. Antiviral Research, 2007, 76, 111-123.	4.1	57
42	Assessment of the inhibitory effect of ribavirin on the rainbow trout rhabdovirus VHSV by real-time reverse-transcription PCR. Veterinary Microbiology, 2007, 122, 52-60.	1.9	32
43	Stable expression of bioactive recombinant pleurocidin in a fish cell line. Applied Microbiology and Biotechnology, 2006, 72, 1217-1228.	3.6	34
44	Identification of selective inhibitors of VHSV from biased combinatorial libraries of N,N′-disubstituted 2,5-piperazinediones. Antiviral Research, 2006, 72, 107-115.	4.1	14
45	Rapid detection and quantitation of viral hemorrhagic septicemia virus in experimentally challenged rainbow trout by real-time RT-PCR. Journal of Virological Methods, 2006, 132, 154-159.	2.1	92
46	The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral Research, 2005, 66, 129-136.	4.1	216
47	Reversible Inhibition of Spreading of In Vitro Infection and Imbalance of Viral Protein Accumulation at Low pH in Viral Hemorrhagic Septicemia Rhabdovirus, a Salmonid Rhabdovirus. Journal of Virology, 2004, 78, 1936-1944.	3.4	32
48	Antibody response to a fragment of the protein G of VHS rhabdovirus in immunised trout. Veterinary Immunology and Immunopathology, 2002, 86, 89-99.	1.2	24
49	Enhanced detection of viral hemorrhagic septicemia virus (a salmonid rhabdovirus) by pretreatment of the virus with a combinatorial library-selected peptide. Journal of Virological Methods, 2002, 106, 17-23.	2.1	14
50	Effect of Cecropin B and a Synthetic Analogue on Propagation of Fish Viruses In Vitro. Marine Biotechnology, 2002, 4, 294-302.	2.4	47
51	Salmonid viral haemorrhagic septicaemia virus: fusion-related enhancement of virus infectivity by peptides derived from viral glycoprotein G or a combinatorial library. Journal of General Virology, 2002, 83, 2671-2681.	2.9	26
52	A Protein G Fragment from the Salmonid Viral Hemorrhagic Septicemia Rhabdovirus Induces Cell-to-Cell Fusion and Membrane Phosphatidylserine Translocation at Low pH. Journal of Biological Chemistry, 2001, 276, 46268-46275.	3.4	33
53	Purification of the glycoprotein G from viral haemorrhagic septicaemia virus, a fish rhabdovirus, by lectin affinity chromatography. Journal of Virological Methods, 1998, 76, 1-8.	2.1	14
54	Mapping of linear antibody epitopes of the glycoprotein of VHSV, a salmonid rhabdovirus. Diseases of Aquatic Organisms, 1998, 34, 167-176.	1.0	32

#	Article	IF	CITATIONS
55	The structural proteins of infectious pancreatic virus are not glycosylated. Journal of Virology, 1996, 70, 7247-7249.	3.4	11
56	Semliki Forest virus 6K protein modifies membrane permeability after inducible expression in Escherichia coli cells. Journal of Biological Chemistry, 1994, 269, 12106-10.	3.4	71
57	Activation of Phospholipase Activity during Semliki Forest Virus Infection. Virology, 1993, 194, 28-36.	2.4	17
58	Brefeldin A blocks protein glycosylation and RNA replication of vesicular stomatitis virus. FEBS Letters, 1993, 336, 496-500.	2.8	24
59	Entry of poliovirus into cells does not require a low-pH step. Journal of Virology, 1993, 67, 4543-4548.	3.4	121
60	Involvement of membrane traffic in the replication of poliovirus genomes: Effects of brefeldin A. Virology, 1992, 191, 166-175.	2.4	133
61	Lack of direct correlation between p220 cleavage and the shut-off of host translation after poliovirus infection. Virology, 1992, 189, 178-186.	2.4	87
62	Cerulenin, an inhibitor of lipid synthesis, blocks vesicular stomatitis virus RNA replication. FEBS Letters, 1991, 280, 129-133.	2.8	15
63	Synthesis of Semliki Forest virus RNA requires continuous lipid synthesis. Virology, 1991, 183, 74-82.	2.4	48