George W Sundin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9134018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-Orchard Population Dynamics of <i>Erwinia amylovora</i> on Apple Flower Stigmas. Phytopathology, 2022, 112, 1214-1225.	1.1	9
2	Identification of novel virulence factors in <i>Erwinia amylovora</i> through temporal transcriptomic analysis of infected apple flowers under field conditions. Molecular Plant Pathology, 2022, 23, 855-869.	2.0	7
3	The RNA-Binding Protein ProQ Impacts Exopolysaccharide Biosynthesis and Second Messenger Cyclic di-GMP Signaling in the Fire Blight Pathogen Erwinia amylovora. Applied and Environmental Microbiology, 2022, 88, e0023922.	1.4	4
4	CsrD regulates amylovoran biosynthesis and virulence in <i>Erwinia amylovora</i> in a novel cyclicâ€diâ€GMP dependent manner. Molecular Plant Pathology, 2022, 23, 1154-1169.	2.0	10
5	Effect of Kasugamycin, Oxytetracycline, and Streptomycin on In-orchard Population Dynamics of <i>Erwinia amylovora</i> on Apple Flower Stigmas. Plant Disease, 2021, 105, 1843-1850.	0.7	23
6	Orchestration of virulence factor expression and modulation of biofilm dispersal in <i>Erwinia amylovora</i> through activation of the Hfqâ€dependent small RNA RprA. Molecular Plant Pathology, 2021, 22, 255-270.	2.0	10
7	Dissecting the process of xylem colonization through biofilm formation in Erwinia amylovora. Journal of Plant Pathology, 2021, 103, 41-49.	0.6	15
8	Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. Journal of Plant Pathology, 2021, 103, 25-39.	0.6	23
9	Survey and Genetic Analysis of Demethylation Inhibitor Fungicide Resistance in <i>Monilinia fructicola</i> From Michigan Orchards. Plant Disease, 2021, 105, 958-964.	0.7	6
10	A Method for the Examination of SDHI Fungicide Resistance Mechanisms in Phytopathogenic Fungi Using a Heterologous Expression System in <i>Sclerotinia sclerotiorum</i> . Phytopathology, 2021, 111, 819-830.	1.1	9
11	A Novel Signaling Pathway Connects Thiamine Biosynthesis, Bacterial Respiration, and Production of the Exopolysaccharide Amylovoran in <i>Erwinia amylovora</i> . Molecular Plant-Microbe Interactions, 2021, 34, 1193-1208.	1.4	8
12	The 2nd International Symposium on Fire Blight of Rosaceous Plants: a Journal of Plant Pathology special issue. Journal of Plant Pathology, 2021, 103, 1-2.	0.6	1
13	Genetic Dissection of the <i>Erwinia amylovora</i> Disease Cycle. Annual Review of Phytopathology, 2021, 59, 191-212.	3.5	26
14	Activation of metabolic and stress responses during subtoxic expression of the type I toxin hok in Erwinia amylovora. BMC Genomics, 2021, 22, 74.	1.2	7
15	Resistance to Boscalid, Fluopyram and Fluxapyroxad in Blumeriella jaapii from Michigan (U.S.A.): Molecular Characterization and Assessment of Practical Resistance in Commercial Cherry Orchards. Microorganisms, 2021, 9, 2198.	1.6	5
16	Tricarboxylic Acid (TCA) Cycle Enzymes and Intermediates Modulate Intracellular Cyclic di-GMP Levels and the Production of Plant Cell Wall–Degrading Enzymes in Soft Rot Pathogen <i>Dickeya dadantii</i> . Molecular Plant-Microbe Interactions, 2020, 33, 296-307.	1.4	9
17	Sensitive and specific detection of Xanthomonas campestris pv. zinniae by PCR using pathovar-specific primers. European Journal of Plant Pathology, 2020, 156, 491-500.	0.8	0
18	Cyclic-di-GMP Regulates Autoaggregation Through the Putative Peptidoglycan Hydrolase, EagA, and Regulates Transcription of the znuABC Zinc Uptake Gene Cluster in Erwinia amylovora. Frontiers in Microbiology, 2020, 11, 605265.	1.5	10

#	Article	IF	CITATIONS
19	Complete Genome Sequence of the Fire Blight Pathogen Strain <i>Erwinia amylovora</i> Ea1189. Molecular Plant-Microbe Interactions, 2020, 33, 1277-1279.	1.4	10
20	Draft Genome Sequence Resource for Blumeriella jaapii, the Cherry Leaf Spot Pathogen. Phytopathology, 2020, 110, 1507-1510.	1.1	1
21	Cell-length heterogeneity: a population-level solution to growth/virulence trade-offs in the plant pathogen Dickeya dadantii. PLoS Pathogens, 2019, 15, e1007703.	2.1	14
22	Evaluation of a contact sterilant as a niche-clearing method to enhance the colonization of apple flowers and efficacy of Aureobasidium pullulans in the biological control of fire blight. Biological Control, 2019, 139, 104073.	1.4	7
23	The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in Erwinia amylovora. MBio, 2019, 10, .	1.8	30
24	Chromosomally Encoded <i>hok-sok</i> Toxin-Antitoxin System in the Fire Blight Pathogen Erwinia amylovora: Identification and Functional Characterization. Applied and Environmental Microbiology, 2019, 85, .	1.4	8
25	A feedâ€forward signalling circuit controls bacterial virulence through linking cyclic diâ€GMP and two mechanistically distinct sRNAs, ArcZ and RsmB. Environmental Microbiology, 2019, 21, 2755-2771.	1.8	36
26	Three Hfqâ€dependent small RNAs regulate flagellar motility in the fire blight pathogen <i>Erwinia amylovora</i> . Molecular Microbiology, 2019, 111, 1476-1492.	1.2	36
27	Physiological and Microscopic Characterization of Cyclic-di-GMP-Mediated Autoaggregation in Erwinia amylovora. Frontiers in Microbiology, 2019, 10, 468.	1.5	19
28	The efficacy of trunk injections of emamectin benzoate and phosphorous acid for control of obliquebanded leafroller and apple scab on semi-dwarf apple. Crop Protection, 2019, 118, 44-49.	1.0	10
29	Bacteria Associated with Onion Foliage in Michigan and Their Copper Sensitivity. Plant Health Progress, 2019, 20, 170-177.	0.8	4
30	Small RNA ArcZ Regulates Oxidative Stress Response Genes and Regulons in Erwinia amylovora. Frontiers in Microbiology, 2019, 10, 2775.	1.5	6
31	Functional Characterization of a Global Virulence Regulator Hfq and Identification of Hfq-Dependent sRNAs in the Plant Pathogen Pantoea ananatis. Frontiers in Microbiology, 2019, 10, 2075.	1.5	17
32	Boscalid Resistance in <i>Blumeriella jaapii</i> : Distribution, Effect on Field Efficacy, and Molecular Characterization. Plant Disease, 2019, 103, 1112-1118.	0.7	15
33	Phosphodiesterase Genes Regulate Amylovoran Production, Biofilm Formation, and Virulence in Erwinia amylovora. Applied and Environmental Microbiology, 2019, 85, .	1.4	22
34	Transcriptional response of <i>Erwinia amylovora</i> to copper shock: <i>in vivo</i> role of the <i>copA</i> gene. Molecular Plant Pathology, 2018, 19, 169-179.	2.0	14
35	Cellulose production, activated by cyclic diâ€GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the threeâ€dimensional architectures of biofilms formed by <i>Erwinia amylovora</i> Ea1189. Molecular Plant Pathology, 2018, 19, 90-103.	2.0	48
36	Comparative genomics of Spiraeoideaeâ€infecting <i>Erwinia amylovora</i> strains provides novel insight to genetic diversity and identifies the genetic basis of a lowâ€virulence strain. Molecular Plant Pathology, 2018, 19, 1652-1666.	2.0	34

#	Article	IF	CITATIONS
37	Draft Genome Resources for the Phytopathogenic Fungi <i>Monilinia fructicola</i> , <i>M. fructigena</i> , <i>M. polystroma</i> , and <i>M. laxa</i> , the Causal Agents of Brown Rot. Phytopathology, 2018, 108, 1141-1142.	1.1	19
38	Antibiotic Resistance in Plant-Pathogenic Bacteria. Annual Review of Phytopathology, 2018, 56, 161-180.	3.5	211
39	Regulation of Effector Delivery by Type III Secretion Chaperone Proteins in Erwinia amylovora. Frontiers in Microbiology, 2018, 9, 146.	1.5	14
40	Development of a Method to Monitor Gene Expression in Single Bacterial Cells During the Interaction With Plants and Use to Study the Expression of the Type III Secretion System in Single Cells of Dickeya dadantii in Potato. Frontiers in Microbiology, 2018, 9, 1429.	1.5	13
41	Microbiological Examination of <i>Erwinia amylovora</i> Exopolysaccharide Ooze. Phytopathology, 2017, 107, 403-411.	1.1	46
42	Recombination of Virulence Genes in Divergent Acidovorax avenae Strains That Infect a Common Host. Molecular Plant-Microbe Interactions, 2017, 30, 813-828.	1.4	15
43	Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics, 2017, 18, 365.	1.2	23
44	Exploration of Using Antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a Novel Bactericide against Fire Blight Pathogen Erwinia amylovora. Frontiers in Microbiology, 2017, 8, 687.	1.5	37
45	Bacterial disease management: challenges, experience, innovation and future prospects. Molecular Plant Pathology, 2016, 17, 1506-1518.	2.0	164
46	Identification of the HrpS binding site in the <i>hrpL</i> promoter and effect of the RpoN binding site of HrpS on the regulation of the type III secretion system in <i>Erwinia amylovora</i> . Molecular Plant Pathology, 2016, 17, 691-702.	2.0	17
47	Comparison of drill- and needle-based tree injection technologies in healing of trunk injection ports on apple trees. Urban Forestry and Urban Greening, 2016, 19, 151-157.	2.3	19
48	New insights on molecular regulation of biofilm formation in plantâ€associated bacteria. Journal of Integrative Plant Biology, 2016, 58, 362-372.	4.1	102
49	Perspectives on the Transition From Bacterial Phytopathogen Genomics Studies to Applications Enhancing Disease Management: From Promise to Practice. Phytopathology, 2016, 106, 1071-1082.	1.1	12
50	Seasonal and Cross-Seasonal Timing of Fungicide Trunk Injections in Apple Trees to Optimize Management of Apple Scab. Plant Disease, 2016, 100, 1606-1616.	0.7	20
51	HrcU and HrpP are pathogenicity factors in the fire blight pathogen Erwinia amylovora required for the type III secretion of DspA/E. BMC Microbiology, 2016, 16, 88.	1.3	Ο
52	Characterization of Streptomycin Resistance in Isolates of <i>Erwinia amylovora</i> in California. Phytopathology, 2015, 105, 1302-1310.	1.1	68
53	Focus Issue Articles on Emerging and Re-Emerging Plant Diseases. Phytopathology, 2015, 105, 852-854.	1.1	14
54	Crossâ€ŧalk between a regulatory small <scp>RNA</scp> , cyclicâ€diâ€ <scp>GMP</scp> signalling and flagellar regulator <scp>FlhDC</scp> for virulence and bacterial behaviours. Environmental Microbiology, 2015, 17, 4745-4763.	1.8	34

#	Article	IF	CITATIONS
55	Do some IPM concepts contribute to the development of fungicide resistance? Lessons learned from the apple scab pathosystem in the United States. Pest Management Science, 2015, 71, 331-342.	1.7	47
56	Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Frontiers in Plant Science, 2015, 6, 16.	1.7	94
57	Towards Understanding Fire Blight: Virulence Mechanisms and Their Regulation in Erwinia Amylovora. , 2015, , 61-82.		6
58	Smallâ€molecule inhibitors suppress the expression of both type <scp>III</scp> secretion and amylovoran biosynthesis genes in <i><scp>E</scp>rwinia amylovora</i> . Molecular Plant Pathology, 2014, 15, 44-57.	2.0	51
59	Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function. BMC Genomics, 2014, 15, 414.	1.2	64
60	Cherry leaf spot resistance in cherry (Prunus) is associated with a quantitative trait locus on linkage group 4 inherited from P. canescens. Molecular Breeding, 2014, 34, 927-935.	1.0	15
61	Deciphering the Components That Coordinately Regulate Virulence Factors of the Soft Rot Pathogen <i>Dickeya dadantii</i> . Molecular Plant-Microbe Interactions, 2014, 27, 1119-1131.	1.4	16
62	Focus on Food Safety: Human Pathogens on Plants. Phytopathology, 2014, , PHYTO-103-4-030.	1.1	2
63	Geneâ€forâ€gene relationship in the host–pathogen system <i><scp>M</scp>alusÂ</i> ×Â <i>robusta</i> 5– <i><scp>E</scp>rwinia amylovora</i> . New Phytologist, 2013, 197, 1262-1275.	3.5	88
64	Global Small RNA Chaperone Hfq and Regulatory Small RNAs Are Important Virulence Regulators in Erwinia amylovora. Journal of Bacteriology, 2013, 195, 1706-1717.	1.0	83
65	Focus on Food Safety: Human Pathogens on Plants. Phytopathology, 2013, 103, 304-305.	1.1	8
66	Evaluation of dodine, fluopyram and penthiopyrad for the management of leaf spot and powdery mildew of tart cherry, and fungicide sensitivity screening of Michigan populations of <i>Blumeriella jaapii</i> . Pest Management Science, 2013, 69, 747-754.	1.7	34
67	Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora. Journal of Bacteriology, 2013, 195, 4778-4778.	1.0	Ο
68	Recruitment and Rearrangement of Three Different Genetic Determinants into a Conjugative Plasmid Increase Copper Resistance in Pseudomonas syringae. Applied and Environmental Microbiology, 2013, 79, 1028-1033.	1.4	46
69	Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora. Journal of Bacteriology, 2013, 195, 2155-2165.	1.0	77
70	Genome-Wide Identification of Genes Regulated by the Rcs Phosphorelay System in <i>Erwinia amylovora</i> . Molecular Plant-Microbe Interactions, 2012, 25, 6-17.	1.4	52
71	General and inducible hypermutation facilitate parallel adaptation in <i>Pseudomonas aeruginosa</i> despite divergent mutation spectra. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13680-13685.	3.3	33
72	Fire Blight: Applied Genomic Insights of the Pathogen and Host. Annual Review of Phytopathology, 2012, 50, 475-494.	3.5	118

#	Article	IF	CITATIONS
73	Genetic characterization of the HrpL regulon of the fire blight pathogen <i>Erwinia amylovora</i> reveals novel virulence factors. Molecular Plant Pathology, 2012, 13, 160-173.	2.0	54
74	Erwinia amylovora CRISPR Elements Provide New Tools for Evaluating Strain Diversity and for Microbial Source Tracking. PLoS ONE, 2012, 7, e41706.	1.1	73
75	Growth Parameter Components of Adaptive Specificity during Experimental Evolution of the UVR-Inducible Mutator Pseudomonas cichorii 302959. PLoS ONE, 2011, 6, e15975.	1.1	1
76	Sequence and Role in Virulence of the Three Plasmid Complement of the Model Tumor-Inducing Bacterium Pseudomonas savastanoi pv. savastanoi NCPPB 3335. PLoS ONE, 2011, 6, e25705.	1.1	43
77	Evaluation of Kasugamycin for Fire Blight Management, Effect on Nontarget Bacteria, and Assessment of Kasugamycin Resistance Potential in <i>Erwinia amylovora</i> . Phytopathology, 2011, 101, 192-204.	1.1	97
78	Genetic Analysis of Streptomycin-Resistant (Sm ^R) Strains of <i>Erwinia amylovora</i> Suggests that Dissemination of Two Genotypes Is Responsible for the Current Distribution of Sm ^R <i>E. amylovora</i> in Michigan. Phytopathology, 2011, 101, 182-191.	1.1	64
79	Identification of Resistance to Multiple Fungicides in Field Populations of <i>Venturia inaequalis</i> . Plant Disease, 2011, 95, 921-926.	0.7	67
80	Occurrence of Qol Resistance and Detection of the G143A Mutation in Michigan Populations of Venturia inaequalis. Plant Disease, 2011, 95, 927-934.	0.7	50
81	Cell Surface Attachment Structures Contribute to Biofilm Formation and Xylem Colonization by Erwinia amylovora. Applied and Environmental Microbiology, 2011, 77, 7031-7039.	1.4	117
82	Relative Susceptibility of Selected Apple Cultivars to Apple Scab Caused by <i>Venturia inaequalis</i> . Plant Health Progress, 2010, 11, .	0.8	5
83	The Type 2 Secretion Pseudopilin, <i>gspJ</i> , Is Required for Multihost Pathogenicity of <i>Burkholderia cenocepacia</i> AU1054. Infection and Immunity, 2010, 78, 4110-4121.	1.0	17
84	Diversity and Biogeography of Sooty Blotch and Flyspeck Fungi on Apple in the Eastern and Midwestern United States. Phytopathology, 2010, 100, 345-355.	1.1	55
85	The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genetics and Biology, 2010, 47, 753-760.	0.9	64
86	Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE. Research in Microbiology, 2010, 161, 613-618.	1.0	12
87	Long-Term Effects of Inducible Mutagenic DNA Repair on Relative Fitness and Phenotypic Diversification in Pseudomonas cichorii 302959. Genetics, 2009, 181, 199-208.	1.2	11
88	Genetic Diversity and Multihost Pathogenicity of Clinical and Environmental Strains of <i>Burkholderia cenocepacia</i> . Applied and Environmental Microbiology, 2009, 75, 5250-5260.	1.4	24
89	Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genomics, 2009, 10, 245.	1.2	85
90	Effect of a <i>waaL</i> mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in <i>Erwinia amylovora</i> . FEMS Microbiology Letters, 2009, 291, 80-87.	0.7	72

#	Article	IF	CITATIONS
91	Field Evaluation of Biological Control of Fire Blight in the Eastern United States. Plant Disease, 2009, 93, 386-394.	0.7	96
92	Contribution of <i>Erwinia amylovora</i> Exopolysaccharides Amylovoran and Levan to Biofilm Formation: Implications in Pathogenicity. Phytopathology, 2009, 99, 1237-1244.	1.1	210
93	Construction and analysis of pathogenicity island deletion mutants of <i>Erwinia amylovora</i> . Canadian Journal of Microbiology, 2009, 55, 457-464.	0.8	91
94	Functional Analysis of the N Terminus of the Erwinia amylovora Secreted Effector DspA/E Reveals Features Required for Secretion, Translocation, and Binding to the Chaperone DspB/F. Molecular Plant-Microbe Interactions, 2009, 22, 1282-1292.	1.4	31
95	Evidence that Prohexadione-Calcium Induces Structural Resistance to Fire Blight Infection. Phytopathology, 2009, 99, 591-596.	1.1	17
96	Phenotypic and Genetic Analysis of Epiphytic <i>Pseudomonas syringae</i> Populations from Sweet Cherry in Michigan. Plant Disease, 2008, 92, 372-378.	0.7	39
97	Clobal Genomic Analysis of <i>Pseudomonas savastanoi</i> pv. savastanoi Plasmids. Journal of Bacteriology, 2008, 190, 625-635.	1.0	53
98	Identification and Onion Pathogenicity of <i>Burkholderia cepacia</i> Complex Isolates from the Onion Rhizosphere and Onion Field Soil. Applied and Environmental Microbiology, 2008, 74, 3121-3129.	1.4	64
99	Phylogenetic Analysis of the pPT23A Plasmid Family of Pseudomonas syringae. Applied and Environmental Microbiology, 2007, 73, 1287-1295.	1.4	41
100	Integration of Copper-Based and Reduced-Risk Fungicides for Control of Blumeriella jaapii on Sour Cherry. Plant Disease, 2007, 91, 294-300.	0.7	10
101	Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control. Plant Disease, 2007, 91, 4-17.	0.7	154
102	Genomic Insights into the Contribution of Phytopathogenic Bacterial Plasmids to the Evolutionary History of Their Hosts. Annual Review of Phytopathology, 2007, 45, 129-151.	3.5	85
103	The microbiology of mutability. FEMS Microbiology Letters, 2007, 277, 11-20.	0.7	53
104	The Erwinia amylovora avrRpt2EA Gene Contributes to Virulence on Pear and AvrRpt2EA Is Recognized by Arabidopsis RPS2 When Expressed in Pseudomonas syringae. Molecular Plant-Microbe Interactions, 2006, 19, 644-654.	1.4	83
105	Occurrence, Distribution, and Polymerase Chain Reaction-Based Detection of Resistance to Sterol Demethylation Inhibitor Fungicides in Populations of Blumeriella jaapii in Michigan. Phytopathology, 2006, 96, 709-717.	1.1	39
106	Transcriptome Analysis Applied to Survival of Shewanella oneidensis MR-1 Exposed to Ionizing Radiation. Journal of Bacteriology, 2006, 188, 1199-1204.	1.0	47
107	Overexpression of the 14α-Demethylase Target Gene (CYP51) Mediates Fungicide Resistance in Blumeriella jaapii. Applied and Environmental Microbiology, 2006, 72, 2581-2585.	1.4	157
108	Genetic Differences between Blight-Causing Erwinia Species with Differing Host Specificities, Identified by Suppression Subtractive Hybridization. Applied and Environmental Microbiology, 2006, 72, 7359-7364.	1.4	37

#	Article	IF	CITATIONS
109	Genome-wide Examination of the Natural Solar Radiation Response in Shewanella oneidensis MR-1. Photochemistry and Photobiology, 2005, 81, 1559.	1.3	9
110	The Role of Pigmentation, Ultraviolet Radiation Tolerance, and Leaf Colonization Strategies in the Epiphytic Survival of Phyllosphere Bacteria. Microbial Ecology, 2005, 49, 104-113.	1.4	104
111	Comparative Genomic Analysis of the pPT23A Plasmid Family of Pseudomonas syringae. Journal of Bacteriology, 2005, 187, 2113-2126.	1.0	43
112	Identification of Erwinia amylovora Genes Induced during Infection of Immature Pear Tissue. Journal of Bacteriology, 2005, 187, 8088-8103.	1.0	140
113	Comparative Analysis of Differentially Expressed Genes in Shewanella oneidensis MR-1 following Exposure to UVC, UVB, and UVA Radiation. Journal of Bacteriology, 2005, 187, 3556-3564.	1.0	70
114	Nucleotide Sequences, Genetic Organization, and Distribution of pEU30 and pEL60 from Erwinia amylovora. Applied and Environmental Microbiology, 2004, 70, 7539-7544.	1.4	53
115	Long-Term Effect of Mutagenic DNA Repair on Accumulation of Mutations in Pseudomonas syringae B86-17. Journal of Bacteriology, 2004, 186, 7807-7810.	1.0	4
116	Survival of Shewanella oneidensis MR-1 after UV Radiation Exposure. Applied and Environmental Microbiology, 2004, 70, 6435-6443.	1.4	38
117	Mutagenic DNA repair potential in Pseudomonas spp., and characterization of the rulABPc operon from the highly mutable strain Pseudomonas cichorii 302959. Canadian Journal of Microbiology, 2004, 50, 29-39.	0.8	11
118	Genetic Analysis of a Pathogenic Erwinia sp. Isolated from Pear in Japan. Phytopathology, 2003, 93, 1393-1399.	1.1	41
119	ANTIBIOTICUSE INPLANTAGRICULTURE. Annual Review of Phytopathology, 2002, 40, 443-465.	3.5	660
120	Distinct Recent Lineages of the strA - strB Streptomycin-Resistance Genes in Clinical and Environmental Bacteria. Current Microbiology, 2002, 45, 63-69.	1.0	62
121	Effect of Solar UV-B Radiation on a Phyllosphere Bacterial Community. Applied and Environmental Microbiology, 2001, 67, 5488-5496.	1.4	139
122	Construction and Analysis of Photolyase Mutants of Pseudomonas aeruginosa and Pseudomonas syringae : Contribution of Photoreactivation, Nucleotide Excision Repair, and Mutagenic DNA Repair to Cell Survival and Mutability following Exposure to UV-B Radiation. Applied and Environmental Microbiology 2001 67, 1405 1411	1.4	43
123	Regulation of the rulAB Mutagenic DNA Repair Operon of Pseudomonas syringae by UV-B (290 to 320) Tj ETQq1 Bacteriology, 2000, 182, 6137-6144.	1 0.78431 1.0	4 rgBT /Ove 51
124	Sequence Diversity of rulA among Natural Isolates of Pseudomonas syringae and Effect on Function of rulAB -Mediated UV Radiation Tolerance. Applied and Environmental Microbiology, 2000, 66, 5167-5173.	1.4	30
125	Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae The EMBL accession numbers for the sequences reported in this paper are AJ276998–AJ277021 Microbiology (United Kingdom), 2000, 146, 2375-2384.	0.7	41
126	Functional analysis of the Pseudomonas syringae rulAB determinant in tolerance to ultraviolet B (290-320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environmental Microbiology, 1999, 1, 75-87.	1.8	80

#	Article	IF	CITATIONS
127	Closely Related Plasmid Replicons Coexisting in the Phytopathogen <i>Pseudomonas syringae</i> Show a Mosaic Organization of the Replication Region and Altered Incompatibility Behavior. Applied and Environmental Microbiology, 1998, 64, 3948-3953.	1.4	39
128	Resistance to ultraviolet light in Pseudomonas syringae: sequence and functional analysis of the plasmid-encoded rulAB genes. Gene, 1996, 177, 77-81.	1.0	68
129	Molecular Analysis of Closely Related Copper- and Streptomycin-Resistance Plasmids inPseudomonas syringaepv. syringae. Plasmid, 1996, 35, 98-107.	0.4	55
130	Nucleoside diphosphate kinase from Pseudomonas aeruginosa: characterization of the gene and its role in cellular growth and exopolysaccharide alginate synthesis. Molecular Microbiology, 1996, 20, 965-979.	1.2	59
131	Distribution of the streptomycin-resistance transposon Tn <i>5393</i> among phylloplane and soil bacteria from managed agricultural habitats. Canadian Journal of Microbiology, 1995, 41, 792-799.	0.8	58
132	Relative fitness in vitro and in planta of <i>Pseudomonas syringae</i> strains containing copper and streptomycin resistance plasmids. Canadian Journal of Microbiology, 1994, 40, 279-285.	0.8	31