Philipp Orekhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9133847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanism of light-driven sodium pumping. Nature Communications, 2020, 11, 2137.	12.8	67
2	Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability. PLoS Computational Biology, 2019, 15, e1007327.	3.2	35
3	Molecular Mechanism of Uptake of Cationic Photoantimicrobial Phthalocyanine across Bacterial Membranes Revealed by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2018, 122, 3711-3722.	2.6	32
4	Comparative Computational Study of Interaction of C60-Fullerene and Tris-Malonyl-C60-Fullerene Isomers with Lipid Bilayer: Relation to Their Antioxidant Effect. PLoS ONE, 2014, 9, e102487.	2.5	30
5	Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer. Langmuir, 2019, 35, 3748-3758.	3.5	29
6	CPE-DB: An Open Database of Chemical Penetration Enhancers. Pharmaceutics, 2021, 13, 66.	4.5	22
7	Sensory Rhodopsin I and Sensory Rhodopsin <scp>II</scp> Form Trimers of Dimers in Complex with their Cognate Transducers. Photochemistry and Photobiology, 2017, 93, 796-804.	2.5	20
8	Cationic Antiseptics Facilitate Pore Formation in Model Bacterial Membranes. Journal of Physical Chemistry B, 2020, 124, 8593-8600.	2.6	20
9	Structure and dynamics of the <scp>SARSâ€CoV</scp> â€2 envelope protein monomer. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1102-1114.	2.6	18
10	Lipid dynamics in nanoparticles formed by maleic acid-containing copolymers: EPR spectroscopy and molecular dynamics simulations. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183207.	2.6	16
11	Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Computational Biology, 2015, 11, e1004561.	3.2	15
12	Molecular model of a sensor of two-component signaling system. Scientific Reports, 2021, 11, 10774.	3.3	14
13	Replicative and radiation-induced aging: a comparison of gene expression profiles. Aging, 2019, 11, 2378-2387.	3.1	13
14	Radioprotectors.org: an open database of known and predicted radioprotectors. Aging, 2020, 12, 15741-15755.	3.1	13
15	Ambiguities in and completeness of SAS data analysis of membrane proteins: the case of the sensory rhodopsin ll–transducer complex. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1386-1400.	2.3	12
16	Mechanisms of Formation, Structure, and Dynamics of Lipoprotein Discs Stabilized by Amphiphilic Copolymers: A Comprehensive Review. Nanomaterials, 2022, 12, 361.	4.1	12
17	Computational Analysis of Mutations in the Receptor-Binding Domain of SARS-CoV-2 Spike and Their Effects on Antibody Binding. Viruses, 2022, 14, 295.	3.3	12
18	Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts. International Journal of Molecular Sciences, 2020, 21, 3110.	4.1	9

Philipp Orekhov

#	Article	IF	CITATIONS
19	Lipid Dynamics in Diisobutylene-Maleic Acid (DIBMA) Lipid Particles in Presence of Sensory Rhodopsin II. International Journal of Molecular Sciences, 2021, 22, 2548.	4.1	9
20	Docking and Molecular Dynamics (MD) Simulations in Potential Drugs Discovery: An Application to Influenza Virus M2 Protein. American Journal of Biochemistry and Biotechnology, 2014, 10, 180-188.	0.4	8
21	Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. International Journal of Molecular Sciences, 2021, 22, 5933.	4.1	8
22	Using a viral 2A peptide-based strategy to reconstruct the bovine P450scc steroidogenic system in S. cerevisiae. Journal of Biotechnology, 2021, 325, 186-195.	3.8	4
23	Synergistic Effect of Chemical Penetration Enhancers on Lidocaine Permeability Revealed by Coarse-Grained Molecular Dynamics Simulations. Membranes, 2021, 11, 410.	3.0	4
24	High-pressure crystallography shows noble gas intervention into protein-lipid interaction and suggests a model for anaesthetic action. Communications Biology, 2022, 5, 360.	4.4	4
25	Small Angle Xâ€ray Scattering Study of a Histidine Kinase Embedded in Styreneâ€Maleic Acid Copolymer Lipid Particles. FASEB Journal, 2021, 35, .	0.5	3
26	Parametrization of the Elastic Network Model Using High-Throughput Parallel Molecular Dynamics Simulations. Supercomputing Frontiers and Innovations, 2019, 6, .	0.4	1
27	Calculation of spectral shifts of the mutants of bacteriorhodopsin by QM/MM methods. Biophysics (Russian Federation), 2012, 57, 144-152.	0.7	0
28	Inter- and Intra-Monomeric Communication in the Cytochrome Bc1 Complex: A Molecular Dynamics Study. Biophysical Journal, 2013, 104, 662a.	0.5	0
29	Light-Induced Switching of HAMP Domain Conformation and Dynamics Revealed by Time-Resolved EPR Spectroscopy. Biophysical Journal, 2015, 108, 259a.	0.5	0
30	Structural dynamics of the A _{2A} adenosine receptor revealed by singleâ€molecule FRET. FASEB Journal, 2021, 35, .	0.5	0
31	Molecular Modeling of the HR2 and Transmembrane Domains of the SARS-CoV-2 S Protein in the Prefusion State. Moscow University Biological Sciences Bulletin, 2021, 76, 130-136.	0.7	0