Jitang Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/913365/publications.pdf

Version: 2024-02-01

567281 642732 27 546 15 23 citations h-index g-index papers 27 27 27 432 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Constitutive modeling of mechanical behaviors in gradient nanostructured alloys with hierarchical dual-phased microstructures. Acta Mechanica, 2022, 233, 3197-3212.	2.1	2
2	Capturing Dynamic Behaviors of a Rate Sensitive, Elastomer with Strain Energy Absorptions and Dissipation Effects. International Journal of Applied Mechanics, 2021, 13, .	2.2	5
3	Elastic-viscoplastic constitutive model for capturing the mechanical response of polymer composite at various strain rates. Journal of Materials Science and Technology, 2020, 57, 12-17.	10.7	20
4	Theory of designing the gradient microstructured metals for overcoming strength-ductility trade-off. Scripta Materialia, 2020, 184, 41-45.	5.2	47
5	Composite design of thin hard AlNi3 coating on soft stainless steel for making the improved impact resistance. Surface and Coatings Technology, 2019, 368, 1-7.	4.8	11
6	Strain hardenability of a gradient metallic alloy under high-strain-rate compressive loading. Materials and Design, 2019, 170, 107695.	7.0	16
7	Studying a Flexible Polyurethane Elastomer with Improved Impact-Resistant Performance. Polymers, 2019, 11, 467.	4.5	30
8	Dynamic compressive response of a dendrite-reinforced Ti-based bulk metallic glass composite. Materials Science & Dynamo and Structural Materials: Properties, Microstructure and Processing, 2018, 720, 140-144.	5.6	8
9	Rate dependency of a Zr-based bulk metallic glass: Strength and fracture characteristic. Materials Letters, 2018, 216, 176-178.	2.6	9
10	A nanoscale study of the negative strain rate dependency of the strength of metallic glasses by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 26552-26557.	2.8	6
11	Dynamic compressive response of a developed polymer composite at different strain rates. Composites Part B: Engineering, 2018, 152, 96-101.	12.0	29
12	Deformation to fracture evolution of a flexible polymer under split Hopkinson pressure bar loading. Polymer Testing, 2018, 70, 192-196.	4.8	14
13	High-rate squeezing process of bulk metallic glasses. Scientific Reports, 2017, 7, 45051.	3.3	9
14	Damage mechanisms of bulk metallic glasses under high-rate compression. International Journal of Impact Engineering, 2017, 106, 217-222.	5.0	17
15	Compressive response of a glass–polymer system at various strain rates. Mechanics of Materials, 2016, 95, 49-59.	3.2	16
16	Compressive response of multiple-particles-polymer systems at various strain rates. Polymer, 2016, 91, 62-73.	3.8	26
17	Dynamic compressive mechanical response of a soft polymer material. Materials & Design, 2015, 79, 73-85.	5.1	40
18	High-strain-rate tensile mechanical response of a polyurethane elastomeric material. Polymer, 2015, 65, 72-80.	3.8	62

#	Article	IF	Citations
19	Glass interface effect on high-strain-rate tensile response of a soft polyurethane elastomeric polymer material. Composites Science and Technology, 2015, 118, 55-62.	7.8	24
20	Toughened austenitic stainless steel by surface severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 359-363.	5.6	28
21	Serrated flow behavior induced by blunt mechanism of shear crack propagation in metallic glass. Journal of Materials Research, 2009, 24, 436-440.	2.6	2
22	A novel structural gradient metallic glass composite with enhanced mechanical properties. Scripta Materialia, 2009, 61, 608-611.	5.2	35
23	Deformation and fracture behaviors of Co-based metallic glass and its composite with dendrites. Intermetallics, 2009, 17, 445-452.	3.9	24
24	Fracture behavior of Zr ₅₅ Cu ₃₀ Al ₁₀ Ni ₅ bulk metallic glass under quasi-static and dynamic compression. Journal of Materials Research, 2008, 23, 1744-1750.	2.6	28
25	Nanocrystallization induced by quasi-static fracture of metallic glasses at room temperature. Philosophical Magazine Letters, 2008, 88, 837-843.	1.2	4
26	Effect of microstructures on the compressive deformation and fracture behaviors of Zr47Cu46Al7 bulk metallic glass composites. Journal of Non-Crystalline Solids, 2007, 353, 4707-4717.	3.1	30
27	Dynamic Mechanical Behaviour of Polymer Materials. , 0, , .		4