
## Tkachenko Albina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9133441/publications.pdf Version: 2024-02-01



TRACHENKO ALBINA

| #  | Article                                                                                                                                                                                                                                                     | lF              | CITATIONS        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| 1  | Electrical and optical properties of bacterial cellulose films modified with conductive polymer<br>PEDOT/PSS. Synthetic Metals, 2015, 199, 147-151.                                                                                                         | 3.9             | 29               |
| 2  | Nanotextures of composites based on the interaction between hydroxyapatite and cellulose Gluconacetobacter xylinus. Glass Physics and Chemistry, 2014, 40, 367-374.                                                                                         | 0.7             | 6                |
| 3  | High-strength biocompatible hydrogels based on poly(acrylamide) and cellulose: Synthesis,<br>mechanical properties and perspectives for use as artificial cartilage. Polymer Science - Series A, 2013,<br>55, 302-312.                                      | 1.0             | 25               |
| 4  | Composites based on Gluconacetobacter xylinus bacterial cellulose and calcium phosphates and their dielectric properties. Russian Journal of Applied Chemistry, 2013, 86, 1298-1304.                                                                        | 0.5             | 5                |
| 5  | Phase transitions of native celluloses from evolutionarily different sources into polymorph IV.<br>Russian Journal of Applied Chemistry, 2012, 85, 1923-1929.                                                                                               | 0.5             | 0                |
| 6  | Formation of organic-inorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications. Glass Physics and Chemistry, 2010, 36, 484-493.                                                                  | 0.7             | 9                |
| 7  | Anisotropic swelling and mechanical behavior of composite bacterial cellulose–poly(acrylamide or) Tj ETQq1 1 (<br>2010, 3, 102-111.                                                                                                                         | 0.784314<br>3.1 | rgBT /Over<br>87 |
| 8  | Formation of a composite based on selenium nanoparticles stabilized with<br>poly-N,N,N,N-trimethylmethacryloyloxyethylammonium methyl sulfate and on Acetobacter xylinum<br>cellulose gel films. Russian Journal of Applied Chemistry, 2009, 82, 2006-2010. | 0.5             | 3                |
| 9  | Investigation of nanocomposites based on hydrated calcium phosphates and cellulose Acetobacter xylinum. Class Physics and Chemistry, 2008, 34, 192-200.                                                                                                     | 0.7             | 13               |
| 10 | Network Model of Acetobacter Xylinum Cellulose Intercalated by Drug Nanoparticles. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 165-177.                                                                                   | 0.3             | 8                |
| 11 | Formation of a composite from SeO nanoparticles stabilized with polyvinylpyrrolidone and<br>Acetobacter xylinum cellulose gel films. Russian Journal of Applied Chemistry, 2007, 80, 1549-1557.                                                             | 0.5             | 9                |
| 12 | Interaction of SeO nanoparticles stabilized by poly(vinylpyrrolidone) with gel films of cellulose<br>Acetobacter xylinum. Crystallography Reports, 2006, 51, 619-626.                                                                                       | 0.6             | 7                |
| 13 | Sorption Properties of Gel Films of Bacterial Cellulose. Russian Journal of Applied Chemistry, 2005, 78, 1176-1181.                                                                                                                                         | 0.5             | 10               |
| 14 | Title is missing!. Russian Journal of Applied Chemistry, 2003, 76, 989-996.                                                                                                                                                                                 | 0.5             | 6                |
| 15 | Structure of cellulose Acetobacter xylinum. Crystallography Reports, 2003, 48, 755-762.                                                                                                                                                                     | 0.6             | 27               |