List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/913334/publications.pdf Version: 2024-02-01

Ιιμις ΒλΔ+έρλς

#	Article	IF	CITATIONS
1	Resilience of microbial communities in Mediterranean soil after induced drought and manipulated <scp>UV</scp> radiation. European Journal of Soil Science, 2022, 73, .	3.9	7
2	Let's chat: Communication between electroactive microorganisms. Bioresource Technology, 2022, 347, 126705.	9.6	33
3	Unveiling microbial electricity driven anoxic ammonium removal. Bioresource Technology Reports, 2022, 17, 100975.	2.7	4
4	Electro-cultivation of hydrogen-oxidizing bacteria to accumulate ammonium and carbon dioxide into protein-rich biomass. Bioresource Technology Reports, 2022, 18, 101010.	2.7	1
5	Effects of high nitrate input in the denitrification-DNRA activities in the sediment of a constructed wetland under varying C/N ratios. Ecological Engineering, 2021, 159, 106098.	3.6	17
6	Electro-bioremediation of nitrate and arsenite polluted groundwater. Water Research, 2021, 190, 116748.	11.3	34
7	Steering bio-electro recycling of carbon dioxide towards target compounds through novel inoculation and feeding strategies. Journal of Environmental Chemical Engineering, 2021, 9, 105549.	6.7	6
8	The core microbiome is responsible for volatile silicon and organic compounds degradation during anoxic lab scale biotrickling filter performance. Science of the Total Environment, 2021, 798, 149162.	8.0	13
9	Carbon dioxide to bio-oil in a bioelectrochemical system-assisted microalgae biorefinery process. Sustainable Energy and Fuels, 2021, 6, 150-161.	4.9	22
10	Changes in the Potential Activity of Nitrite Reducers and the Microbial Community Structure After Sediment Dredging and Plant Removal in the Empuriabrava FWS-CW. Microbial Ecology, 2020, 79, 588-603.	2.8	6
11	Potential use of Methylibium sp. as a biodegradation tool in organosilicon and volatile compounds removal for biogas upgrading. Chemosphere, 2020, 240, 124908.	8.2	36
12	Limited effect of radial oxygen loss on ammonia oxidizers in Typha angustifolia root hairs. Scientific Reports, 2020, 10, 15694.	3.3	1
13	Bacteria coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis. Scientific Reports, 2020, 10, 19852.	3.3	30
14	Hydrological variations shape diversity and functional responses of streambed microbes. Science of the Total Environment, 2020, 714, 136838.	8.0	24
15	Thermophilic bio-electro CO ₂ recycling into organic compounds. Green Chemistry, 2020, 22, 2947-2955.	9.0	16
16	Unravelling the factors that influence the bio-electrorecycling of carbon dioxide towards biofuels. Green Chemistry, 2019, 21, 684-691.	9.0	29
17	[NiFe]-hydrogenases are constitutively expressed in an enriched Methanobacterium sp. population during electromethanogenesis. PLoS ONE, 2019, 14, e0215029.	2.5	10
18	Effect of ethanol and butanol on autotrophic growth of model homoacetogens. FEMS Microbiology Letters, 2018, 365, .	1.8	12

#	Article	IF	CITATIONS
19	Denitrifying nirK-containing alphaproteobacteria exhibit different electrode driven nitrite reduction capacities. Bioelectrochemistry, 2018, 121, 74-83.	4.6	26
20	lsotope and microbiome data provide complementary information to identify natural nitrate attenuation processes in groundwater. Science of the Total Environment, 2018, 613-614, 579-591.	8.0	23
21	Specific detection of "Clostridium autoethanogenumâ€, Clostridium ljungdahlii and Clostridium carboxidivorans in complex bioreactor samples. FEMS Microbiology Letters, 2018, 365, .	1.8	1
22	Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction. Bioelectrochemistry, 2017, 117, 57-64.	4.6	159
23	Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity. Bioresource Technology, 2017, 228, 201-209.	9.6	34
24	Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?. Frontiers in Microbiology, 2016, 7, 214.	3.5	479
25	Low Fermentation pH Is a Trigger to Alcohol Production, but a Killer to Chain Elongation. Frontiers in Microbiology, 2016, 7, 702.	3.5	97
26	Bidirectional microbial electron transfer: Switching an acetate oxidizing biofilm to nitrate reducing conditions. Biosensors and Bioelectronics, 2016, 75, 352-358.	10.1	88
27	External Resistances Applied to MFC Affect Core Microbiome and Swine Manure Treatment Efficiencies. PLoS ONE, 2016, 11, e0164044.	2.5	34
28	Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresource Technology, 2015, 192, 296-303.	9.6	111
29	Microbiome characterization of MFCs used for the treatment of swine manure. Journal of Hazardous Materials, 2015, 288, 60-68.	12.4	55
30	Conversion of sewage sludge to commodity chemicals via syngas fermentation. Water Science and Technology, 2015, 72, 415-420.	2.5	12
31	How can alcohol production be improved in carboxydotrophic clostridia?. Process Biochemistry, 2015, 50, 1047-1055.	3.7	25
32	Specific Archaeal Communities are Selected on the Root Surfaces of Ruppia spp. and Phragmites australis. Wetlands, 2014, 34, 403-411.	1.5	17
33	A compositional analysis approach to phytoplankton composition inÂcoastal Mediterranean wetlands: Influence of salinity and nutrient availability. Estuarine, Coastal and Shelf Science, 2014, 136, 72-81.	2.1	18
34	Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 2014, 39, 1297-1305.	7.1	80
35	Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas. International Microbiology, 2014, 17, 195-204.	2.4	18
36	Changes of the phenol-degrading bacterial community during the decomposition of submersedPlatanus acerifolialeaves. FEMS Microbiology Letters, 2013, 338, 184-191.	1.8	4

#	Article	IF	CITATIONS
37	Mass spectrometry identification of alkyl-substituted pyrazines produced by Pseudomonas spp. isolates obtained from wine corks. Food Chemistry, 2013, 138, 2382-2389.	8.2	18
38	Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell. PLoS ONE, 2013, 8, e63460.	2.5	74
39	Emergent Macrophytes Act Selectively on Ammonia-Oxidizing Bacteria and Archaea. Applied and Environmental Microbiology, 2012, 78, 6352-6356.	3.1	46
40	Changes in the microbial communities along the environmental gradient created by a small Fe spring. Freshwater Science, 2012, 31, 599-609.	1.8	14
41	Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae. Applied and Environmental Microbiology, 2012, 78, 318-325.	3.1	47
42	The role of plant type and salinity in the selection for the denitrifying community structure in the rhizosphere of wetland vegetation. International Microbiology, 2012, 15, 89-99.	2.4	46
43	Genetic potential for N2O emissions from the sediment of a free water surface constructed wetland. Water Research, 2011, 45, 5621-5632.	11.3	104
44	The microbiota of an unpolluted calcareous soil faces up chlorophenols: Evidences of resistant strains with potential for bioremediation. Chemosphere, 2011, 83, 104-116.	8.2	21
45	Maintenance of previously uncultured freshwater archaea from anoxic waters under laboratory conditions. Antonie Van Leeuwenhoek, 2011, 99, 403-408.	1.7	6
46	Multivariate analysis of volatile compounds detected by headspace solid-phase microextraction/gas chromatography: A tool for sensory classification of cork stoppers. Food Chemistry, 2011, 126, 1978-1984.	8.2	18
47	Autotrophic nitrite removal in the cathode of microbial fuel cells. Bioresource Technology, 2011, 102, 4462-4467.	9.6	132
48	Nitrogen removal efficiencies in a free water surface constructed wetland in relation to plant coverage. Ecological Engineering, 2011, 37, 678-684.	3.6	29
49	Phosphorus deficiency and kinetics of alkaline phosphatase in isolates and natural populations of phototrophic sulphur bacteria. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	6
50	Molecular Fingerprinting by PCR-Denaturing Gradient Gel Electrophoresis Reveals Differences in the Levels of Microbial Diversity for Musty-Earthy Tainted Corks. Applied and Environmental Microbiology, 2009, 75, 1922-1931.	3.1	20
51	Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiology Ecology, 2009, 67, 308-319.	2.7	148
52	Off-Odor Compounds Produced in Cork by Isolated Bacteria and Fungi: A Gas Chromatographyâ^'Mass Spectrometry and Gas Chromatographyâ^'Olfactometry Study. Journal of Agricultural and Food Chemistry, 2009, 57, 7473-7479.	5.2	20
53	New phylotypes of mesophilic filamentous anoxygenic phototrophic bacteria enriched from sulfideâ€containing environments. Environmental Microbiology Reports, 2009, 1, 86-93.	2.4	8
54	New phylotypes of mesophilic filamentous anoxygenic phototrophic bacteria enriched from sulfide-containing environments. Environmental Microbiology Reports, 2009, 1, 169-169.	2.4	0

#	Article	IF	CITATIONS
55	Screening of musty-earthy compounds from tainted cork using water-based soaks followed by headspace solid-phase microextraction and gas chromatography–mass spectrometry. European Food Research and Technology, 2008, 227, 1085-1090.	3.3	17
56	Fingerprinting the genetic diversity of the biotin carboxylase gene (<i>accC</i>) in aquatic ecosystems as a potential marker for studies of carbon dioxide assimilation in the dark. Environmental Microbiology, 2008, 10, 2527-2536.	3.8	31
57	Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. International Journal of Food Microbiology, 2008, 123, 50-60.	4.7	148
58	Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. International Journal of Food Microbiology, 2008, 127, 91-98.	4.7	71
59	Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 2008, 11, 231-6.	2.4	143
60	Diversity of the nitrite reductase gene nirS in the sediment of a free-water surface constructed wetland. International Microbiology, 2007, 10, 253-60.	2.4	23
61	Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Archives of Microbiology, 2002, 177, 475-485.	2.2	39
62	Are phototrophic sulfur bacteria phosphate-limited?. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 840-844.	0.1	0
63	Evaluation of soluble phosphate as a factor determining the density of sulfur photosynthetic bacteria in Lake SisÃ ³ . Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 850-853.	0.1	2
64	Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1457, 71-80.	1.0	24
65	Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2000, 66, 499-508.	3.1	392
66	Title is missing!. Photosynthesis Research, 1999, 59, 231-241.	2.9	17
67	Growth-rate-dependent bacteriochlorophyll c / d ratio in the antenna of Chlorobium limicola strain UdG6040. Archives of Microbiology, 1999, 171, 350-354.	2.2	15
68	Temporal variability of Chlorobium phaeobacteroides antenna pigments in a meromictic karstic lake. Aquatic Microbial Ecology, 1999, 17, 121-129.	1.8	15
69	Contribution of photosynthetic sulfur bacteria to the alkaline phosphatase activity in anoxic aquatic ecosystems. Aquatic Microbial Ecology, 1999, 18, 15-22.	1.8	7
70	Environmental and physiological factors affecting the uptake of phosphate by Chlorobium limicola. Archives of Microbiology, 1998, 170, 252-258.	2.2	4
71	Structure and Function of Chlorosomes of Chlorobium Limicola UdG 6040 Containing Both Bchl c and Bchl d. , 1998, , 101-104.		1
72	Changes in the Antenna Composition of Chlorobium Limicola Growing in Continuous Culture. , 1998, , 173-176.		1

#	Article	IF	CITATIONS
73	Dynamics of Phototrophic Microbial Populations in the Chemocline of a Meromictic Basin of Lake Banyoles. International Review of Hydrobiology, 1993, 78, 283-294.	0.6	9
74	Dilution as a restoration method in the eutrophic Lake Vilar (Banyoles, Spain). Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1993, 25, 735-738.	0.1	0