
Azhar Abu Bakar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9133138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polymer Testing, 2008, 27, 841-850.	4.8	309
2	Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5190-5195.	5.6	218
3	EPDM/modified halloysite nanocomposites. Applied Clay Science, 2010, 48, 405-413.	5.2	202
4	Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7944-7949.	5.6	181
5	Influence of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of EPDM nanocomposites reinforced by halloysite nanotubes. Polymer Testing, 2009, 28, 548-559.	4.8	135
6	Effect of water absorption on pultruded jute/glass fiber-reinforced unsaturated polyester hybrid composites. Journal of Composite Materials, 2012, 46, 51-61.	2.4	110
7	Properties of Banana and Pandanus Woven Fabric Reinforced Unsaturated Polyester Composites. Journal of Composite Materials, 2008, 42, 931-941.	2.4	79
8	Degradation of dynamic mechanical properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Composites Part B: Engineering, 2011, 42, 71-76.	12.0	79
9	Effect of jute fibre loading on the mechanical and thermal properties of oil palm–epoxy composites. Journal of Composite Materials, 2013, 47, 1633-1641.	2.4	57
10	Synergistic effect of oil palm ash filled natural rubber compound at low filler loading. Polymer Testing, 2013, 32, 38-44.	4.8	42
11	The partial replacement of silica or calcium carbonate by halloysite nanotubes as fillers in ethylene propylene diene monomer composites. Journal of Applied Polymer Science, 2009, 113, 3910-3919.	2.6	41
12	Optimisation of oil palm ash as reinforcement in natural rubber vulcanisation: A comparison between silica and carbon black fillers. Polymer Testing, 2013, 32, 625-630.	4.8	40
13	Mechanical and water absorption behaviors of carbon nanotube reinforced epoxy/glass fiber laminates. Journal of Reinforced Plastics and Composites, 2013, 32, 1715-1721.	3.1	37
14	An investigation of the potential of rice husk ash as a filler for epoxidized natural rubber—II. Fatigue behaviour. European Polymer Journal, 1997, 33, 73-79.	5.4	36
15	Kenaf Core Reinforced High-density Polyethylene/Soya Powder Composites: The Effects of Filler Loading and Compatibilizer. Journal of Reinforced Plastics and Composites, 2010, 29, 2489-2497.	3.1	30
16	Hybrid composites of oil palm empty fruit bunches/woven jute fiber: chemical resistance, physical, and impact properties. Journal of Composite Materials, 2011, 45, 2515-2522.	2.4	29
17	Influence of acetylation on the tensile properties, water absorption, and thermal stability of (Highâ€density polyethylene)/(soya powder)/(kenaf core) composites. Journal of Vinyl and Additive Technology, 2011, 17, 132-137.	3.4	28
18	Mechanical and thermal properties improvement of nano calcium carbonate-filled epoxy/glass fiber composite laminates. High Performance Polymers, 2014, 26, 223-229.	1.8	27

Azhar Abu Bakar

#	Article	IF	CITATIONS
19	Effects of jackfruit waste flour on the properties of poly(vinyl alcohol) film. Journal of Vinyl and Additive Technology, 2011, 17, 198-208.	3.4	26
20	Study on the ageing characteristics of oil palm ash reinforced natural rubber composites by introducing a liquid epoxidized natural rubber coating technique. Polymer Testing, 2014, 37, 156-162.	4.8	26
21	Properties of the crosslinked plasticized biodegradable poly(vinyl alcohol)/rambutan skin waste flour blends. Journal of Applied Polymer Science, 2012, 125, 1127-1135.	2.6	23
22	Curing characteristics, mechanical, morphological, and swelling assessment of liquid epoxidized natural rubber coated oil palm ash reinforced natural rubber composites. Polymer Testing, 2014, 33, 145-151.	4.8	23
23	Properties of Pultruded Jute Fiber Reinforced Unsaturated Polyester Composites. Advanced Composite Materials, 2011, 20, 231-244.	1.9	22
24	The Comparison Effect of Sorbitol and Glycerol as Plasticizing Agents on the Properties of Biodegradable Polyvinyl Alcohol/Rambutan Skin Waste Flour Blends. Polymer-Plastics Technology and Engineering, 2012, 51, 432-437.	1.9	22
25	Effect of different fiber loadings and sizes on pultruded kenaf fiber reinforced unsaturated polyester composites. Polymer Composites, 2015, 36, 1224-1229.	4.6	21
26	Preparation and Properties of Biodegradable Polymer Film Based on Polyvinyl Alcohol and Tropical Fruit Waste Flour. Polymer-Plastics Technology and Engineering, 2011, 50, 705-711.	1.9	20
27	Mechanical properties of particulateâ€filler/wovenâ€glassâ€fabricâ€filled vinyl ester composites. Journal of Vinyl and Additive Technology, 2010, 16, 98-104.	3.4	19
28	Characterization of oil palm ash (OPA) and thermal properties of OPA-filled natural rubber compounds. Journal of Elastomers and Plastics, 2015, 47, 13-27.	1.5	17
29	Properties of nanofillers/crosslinked polyethylene composites for cable insulation. Journal of Vinyl and Additive Technology, 2019, 25, E147-E154.	3.4	15
30	Effects of Kenaf Loading on Processability and Properties of Linear Low-Density Polyethylene/Poly (Vinyl Alcohol)/Kenaf Composites. BioResources, 2015, 10, .	1.0	14
31	Tensile Properties, Water Resistance, and Thermal Properties of Linear Low-Density Polyethylene/Polyvinyl Alcohol/Kenaf Composites: Effect of 3-(trimethoxysilyl) propyl Methacrylate (TMS) as a Silane Coupling Agent. BioResources, 2016, 11, .	1.0	14
32	The Effect of Carbon Black on the Properties of Magnetic Ferrite Filled Natural Rubber Composites. Journal of Reinforced Plastics and Composites, 2008, 27, 1893-1908.	3.1	13
33	Thermal properties and aging characteristics of chemically modified oil palm ash-filled natural rubber composites. Iranian Polymer Journal (English Edition), 2014, 23, 723-730.	2.4	12
34	The Effect of 3-aminopropyltrimethyoxysilane (AMEO) as a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder Composites. Procedia Chemistry, 2016, 19, 327-334.	0.7	12
35	Production of Laminated Natural Fibre Board from Banana Tree Wastes. Procedia Chemistry, 2016, 19, 999-1006.	0.7	12
36	Production of novel epoxy micro-balloons. Materials Letters, 2009, 63, 827-829.	2.6	11

3

Azhar Abu Bakar

#	Article	IF	CITATIONS
37	Eco-friendly coupling agent-treated kenaf/linear low-density polyethylene/poly (vinyl alcohol) composites. Iranian Polymer Journal (English Edition), 2018, 27, 87-96.	2.4	10
38	The effects of dynamic vulcanization and compatibilizer on properties of paper sludgeâ€filled polypropylene/ethylene propylene diene terpolymer composites. Journal of Applied Polymer Science, 2008, 107, 2266-2273.	2.6	9
39	A comparative study of aging characteristics and thermal stability of oil palm ash, silica, and carbon black filled natural rubber vulcanizates. Journal of Applied Polymer Science, 2013, 130, 4474-4481.	2.6	9
40	The Effect of Banana Leaves Lamination on the Mechanical Properties of Particle Board Panel. Procedia Chemistry, 2016, 19, 943-948.	0.7	9
41	Porous epoxy microparticles prepared by an advanced aqueous method. Materials Letters, 2011, 65, 1655-1658.	2.6	8
42	The Effect of Hydrochloric Acid Treatment on Properties of Oil Palm Ash-filled Natural Rubber Composites. BioResources, 2013, 8, .	1.0	8
43	Monitoring deformation mechanism of foam cells in polyethylene foams via optical microscopy: Effect of density and microstructure. Journal of Cellular Plastics, 2018, 54, 957-976.	2.4	7
44	Effect of interlocking between porous epoxy microparticles and elastomer on mechanical properties and deformation modes. Polymer Testing, 2012, 31, 931-937.	4.8	6
45	Effect of Chemical Treatment on the Mechanical Properties of Pultruded Kenaf Fibre Reinforced Polyester Composites. Key Engineering Materials, 0, 594-595, 691-695.	0.4	6
46	Electron beam irradiation of sulphur vulcanised ethylene propylene diene monomer (EPDM) nanocomposites reinforced by halloysite nanotubes. Plastics, Rubber and Composites, 2012, 41, 430-440.	2.0	5
47	A Study on the Curing Characteristics, Tensile, Fatigue, and Morphological Properties of Alkali-Treated Palm Kernel Shell-Filled Natural Rubber Composites. BioResources, 2016, 12, .	1.0	5
48	Influence of Kenaf (KNF) Loading on Processing Torque and Water Absorption Properties of KNF-Filled Linear Low-Density Polyethylene/Poly (vinyl alcohol) (LLDPE/PVA) Composites. Procedia Chemistry, 2016, 19, 505-509.	0.7	5
49	Effectiveness of A Simple Image Enhancement Method in Characterizing Polyethylene Foam Morphology using Optical Microscopy. Procedia Chemistry, 2016, 19, 477-484.	0.7	5
50	Linear Low Density Polyethylene/Poly (Vinyl Alcohol)/Kenaf Composites: Effect of Natural Weathering on Functional Group, Weight Loss Characteristics, Tensile, Morphological and Thermal Properties. Sains Malaysiana, 2018, 47, 571-580.	0.5	5
51	Preparation of poly(methyl methacrylate) and polystyrene-composite-filled porous epoxy microparticles via in-situ suspension polymerization. Polymer Testing, 2011, 30, 841-847.	4.8	4
52	Properties of Kenaf Bast Powder-Filled High Density Polyethylene/Ethylene Propylene Diene Monomer Composites. BioResources, 2013, 8, .	1.0	4
53	Soil Burial Study of Palm Kernel Shell-Filled Natural Rubber Composites: The Effect of Filler Loading and Presence of Silane Coupling Agent. BioResources, 2016, 11, .	1.0	4
54	Degradation of linear low-density polyethylene/poly(vinyl alcohol)/kenaf composites. Iranian Polymer Journal (English Edition), 2017, 26, 703-709.	2.4	4

#	Article	IF	CITATIONS
55	Mechanical, morphological, and thermal properties of kenaf filled linear lowâ€density polyethylene/poly(vinyl alcohol) composites: Effect of chemical treatment. Journal of Vinyl and Additive Technology, 2018, 24, E164.	3.4	4
56	Advanced hollow epoxy particle-filled composites. Journal of Composite Materials, 2011, 45, 2287-2299.	2.4	3
57	Chemically modified oil palm ashâ€filled natural rubber composites and its properties. Polymer Composites, 2014, 35, 691-697.	4.6	3
58	Mechanical, thermal and water absorption behavior of hollow epoxy particle–filled polyester composites. Journal of Composite Materials, 2014, 48, 1725-1733.	2.4	2
59	Exploiting the Plackett–Burman design to examine the formulation effect on curing characteristics of oil palm ash-filled acrylonitrile butadiene rubber compounds. Iranian Polymer Journal (English) Tj ETQq1 1 0.78	432 .4 rgBT	/@verlock]
60	The partial replacement of palm kernel shell by carbon black and halloysite nanotubes as fillers in natural rubber composites. , 2017, , .		2
61	Investigation on Improvement of Mechanical Properties of Kenaf / E-Glass Fiber Composites by Mercerization Process. Key Engineering Materials, 0, 471-472, 227-232.	0.4	1
62	Characterization and Properties of Pretreatment Effect on Oil Palm Ash Filled Natural Rubber Vulcanizates. Polymer-Plastics Technology and Engineering, 2014, 53, 123-129.	1.9	1
63	Processing torque and thermal properties of kenaf (KNF) filled linear low-density polyethylene/poly (vinyl alcohol) (LLDPE/PVOH) composites with addition of 3-(trimethoxysilyl)propyl methacrylate. , 2017, , .		1
64	Dynamic Mechanical Properties and Tensile Behavior of Oil Palm Ash Filled Natural Rubber Vulcanizates. Advanced Materials Research, 0, 844, 305-308.	0.3	0