Haiyuan Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9132782/haiyuan-zhang-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 96 7,334 39 h-index g-index citations papers 5.68 8,304 100 10.2 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
96	Property-activity relationship between physicochemical properties of PM and their activation of NLRP3 inflammasome <i>NanoImpact</i> , 2022 , 25, 100380	5.6	O
95	Core-shell nanomaterials engineered to reverse cancer multidrug resistance by immunotherapy and promote photo-responsive chemotherapy. <i>Chemical Engineering Journal</i> , 2022 , 429, 132329	14.7	1
94	Dermal Toxicity Influence of Gold Nanomaterials after Embedment in Cosmetics. <i>Toxics</i> , 2022 , 10, 276	4.7	1
93	Tumor microcalcification-mediated relay drug delivery for photodynamic immunotherapy of breast cancer <i>Acta Biomaterialia</i> , 2021 , 140, 518-518	10.8	2
92	Density functional theory, molecular docking and muscle relaxant, sedative, and analgesic studies of indanone derivatives isolated from. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 39, 6488-6	343 ⁶	1
91	Immunomodulation of Tumor Microenvironment by Arginine-Loaded Iron Oxide Nanoparticles for Gaseous Immunotherapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 19825-19835	9.5	6
90	Combination of MAPK inhibition with photothermal therapy synergistically augments the anti-tumor efficacy of immune checkpoint blockade. <i>Journal of Controlled Release</i> , 2021 , 332, 194-209	11.7	10
89	Copper Phosphide Nanoparticles Used for Combined Photothermal and Photodynamic Tumor Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 2745-2754	5.5	3
88	Biodegradable Copper-Based Nanoparticles Augmented Chemodynamic Therapy through Deep Penetration and Suppressing Antioxidant Activity in Tumors. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100412	10.1	8
87	Plasmon-pyroelectric nanostructures used to produce a temperature-mediated reactive oxygen species for hypoxic tumor therapy. <i>Nano Today</i> , 2021 , 38, 101110	17.9	5
86	Particulate matter aggravates Alzheimer's disease by activating the NLRP3 inflammasome to release ASC specks. <i>Environmental Science: Nano</i> , 2021 , 8, 2177-2190	7.1	2
85	Regulation of Electronic Properties of Metal Oxide Nanoparticles to Reveal Their Toxicity Mechanism and Safe-by-Design Approach. <i>Advanced Biology</i> , 2021 , 5, 2000220		2
84	Thylakoid Membranes with Unique Photosystems Used to Simultaneously Produce Self-Supplying Oxygen and Singlet Oxygen for Hypoxic Tumor Therapy. <i>Advanced Healthcare Materials</i> , 2021 , 10, e200	1 <u>66</u> 6	10
83	Phyto-fabrication, purification, characterisation, optimisation, and biological competence of nano-silver. <i>IET Nanobiotechnology</i> , 2021 , 15, 1-18	2	10
82	Therapeutic strategies of iron-based nanomaterials for cancer therapy. <i>Biomedical Materials</i> (Bristol), 2021 , 16, 032003	3.5	2
81	Electronic Band-Engineered Nanomaterials for Biosafety and Biomedical Application. <i>Accounts of Materials Research</i> , 2021 , 2, 764-779	7.5	3
80	Biotransformation of soluble-insoluble lanthanum species and its induced NLRP3 inflammasome activation and chronic fibrosis. <i>Environmental Pollution</i> , 2021 , 284, 117438	9.3	1

(2019-2021)

79	Energy transfer facilitated near infrared fluorescence imaging and photodynamic therapy of tumors. <i>Biomaterials Science</i> , 2021 , 9, 4662-4670	7.4	3
78	Neutrophil mediated postoperative photoimmunotherapy against melanoma skin cancer. Nanoscale, 2021 , 13, 14825-14836	7.7	O
77	Understanding Nanomaterial Biotransformation: An Unmet Challenge to Achieving Predictive Nanotoxicology. <i>Small</i> , 2020 , 16, e1907650	11	12
76	Safety-by-Design of Metal Oxide Nanoparticles Based on the Regulation of their Energy Edges. <i>Small</i> , 2020 , 16, e1907643	11	9
75	Redox Activity and Nano-Bio Interactions Determine the Skin Injury Potential of CoO-Based Metal Oxide Nanoparticles toward Zebrafish. <i>ACS Nano</i> , 2020 , 14, 4166-4177	16.7	6
74	Spatiotemporally Synchronous Oxygen Self-Supply and Reactive Oxygen Species Production on Z-Scheme Heterostructures for Hypoxic Tumor Therapy. <i>Advanced Materials</i> , 2020 , 32, e1908109	24	59
73	Sn complexation with sulfonated-carbon dots in pursuit of enhanced fluorescence and singlet oxygen quantum yield. <i>Dalton Transactions</i> , 2020 , 49, 6950-6956	4.3	7
72	LncRNA DLX6-AS1 increases the expression of HIF-1 and promotes the malignant phenotypes of nasopharyngeal carcinoma cells via targeting MiR-199a-5p. <i>Molecular Genetics & amp; Genomic Medicine</i> , 2020 , 8, e1017	2.3	13
71	A biomimetic nanoenzyme for starvation therapy enhanced photothermal and chemodynamic tumor therapy. <i>Nanoscale</i> , 2020 , 12, 23159-23165	7.7	20
70	Nitric Oxide Stimulated Programmable Drug Release of Nanosystem for Multidrug Resistance Cancer Therapy. <i>Nano Letters</i> , 2019 , 19, 6800-6811	11.5	51
69	Hierarchical Acceleration of Wound Healing through Intelligent Nanosystem to Promote Multiple Stages. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	20
68	Differential photothermal and photodynamic performance behaviors of gold nanorods, nanoshells and nanocages under identical energy conditions. <i>Biomaterials Science</i> , 2019 , 7, 1448-1462	7.4	17
67	Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core-Shell Nanoparticles. <i>Nano Letters</i> , 2019 , 19, 4478-4489	11.5	33
66	Sunlight-Mediated Antibacterial Activity Enhancement of Gold Nanoclusters and Graphene Co-decorated Titanium Dioxide Nanocomposites. <i>Journal of Cluster Science</i> , 2019 , 30, 985-994	3	10
65	Intelligent Hollow Pt-CuS Janus Architecture for Synergistic Catalysis-Enhanced Sonodynamic and Photothermal Cancer Therapy. <i>Nano Letters</i> , 2019 , 19, 4134-4145	11.5	201
64	Long non-coding RNA 520 is a negative prognostic biomarker and exhibits pro-oncogenic function in nasopharyngeal carcinoma carcinogenesis through regulation of miR-26b-3p/USP39 axis. <i>Gene</i> , 2019 , 707, 44-52	3.8	15
63	Immunotherapy: MAPK-Targeted Drug Delivered by a pH-Sensitive MSNP Nanocarrier Synergizes with PD-1 Blockade in Melanoma without T-Cell Suppression (Adv. Funct. Mater. 12/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970079	15.6	
62	Upshift of the d Band Center toward the Fermi Level for Promoting Silver Ion Release, Bacteria Inactivation, and Wound Healing of Alloy Silver Nanoparticles. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 12224-12231	9.5	32

61	Anisotropic Plasmonic Metal Heterostructures as Theranostic Nanosystems for Near Infrared Light-Activated Fluorescence Amplification and Phototherapy. <i>Advanced Science</i> , 2019 , 6, 1900158	13.6	29
60	Novel Meta-iodobenzylguanidine-Based Copper Thiosemicarbazide-1-guanidinomethylbenzyl Anticancer Compounds Targeting Norepinephrine Transporter in Neuroblastoma. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 6985-6991	8.3	10
59	Hollow, Rough, and Nitric Oxide-Releasing Cerium Oxide Nanoparticles for Promoting Multiple Stages of Wound Healing. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900256	10.1	37
58	Time-staggered delivery of erlotinib and doxorubicin by gold nanocages with two smart polymers for reprogrammable release and synergistic with photothermal therapy. <i>Biomaterials</i> , 2019 , 217, 11932	27 ^{15.6}	33
57	Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanoparticles for synergistic tumor therapy. <i>Nano Research</i> , 2019 , 12, 2947-2953	10	27
56	MAPK-Targeted Drug Delivered by a pH-Sensitive MSNP Nanocarrier Synergizes with PD-1 Blockade in Melanoma without T-Cell Suppression. <i>Advanced Functional Materials</i> , 2019 , 29, 1806916	15.6	23
55	Bismuth Sulfide Nanorods with Retractable Zinc Protoporphyrin Molecules for Suppressing Innate Antioxidant Defense System and Strengthening Phototherapeutic Effects. <i>Advanced Materials</i> , 2019 , 31, e1806808	24	57
54	Band Alignment-Driven Oxidative Injury to the Skin by Anatase/Rutile Mixed-Phase Titanium Dioxide Nanoparticles Under Sunlight Exposure. <i>Toxicological Sciences</i> , 2018 , 164, 300-312	4.4	5
53	Resonance Energy Transfer-Promoted Photothermal and Photodynamic Performance of Gold-Copper Sulfide Yolk-Shell Nanoparticles for Chemophototherapy of Cancer. <i>Nano Letters</i> , 2018 , 18, 886-897	11.5	123
52	NLRP3 inflammasome activation and lung fibrosis caused by airborne fine particulate matter. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 163, 612-619	7	76
51	Novel Bismuth-Based Nanomaterials Used for Cancer Diagnosis and Therapy. <i>Chemistry - A European Journal</i> , 2018 , 24, 17405-17418	4.8	27
50	Deep-Level Defect Enhanced Photothermal Performance of Bismuth Sulfide L old Heterojunction Nanorods for Photothermal Therapy of Cancer Guided by Computed Tomography Imaging. Angewandte Chemie, 2018 , 130, 252-257	3.6	15
49	Deep-Level Defect Enhanced Photothermal Performance of Bismuth Sulfide-Gold Heterojunction Nanorods for Photothermal Therapy of Cancer Guided by Computed Tomography Imaging. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 246-251	16.4	174
48	Facile surface functionalization of upconversion nanoparticles with phosphoryl pillar[5]arenes for controlled cargo release and cell imaging. <i>Chemical Communications</i> , 2018 , 54, 12990-12993	5.8	28
47	Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapy. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 34655-34663	9.5	72
46	Understanding the Property-Activity Relationships of Polyhedral Cuprous Oxide Nanocrystals in Terms of Reactive Crystallographic Facets. <i>Toxicological Sciences</i> , 2017 , 156, 480-491	4.4	13
45	{101}-{001} Surface Heterojunction-Enhanced Antibacterial Activity of Titanium Dioxide Nanocrystals Under Sunlight Irradiation. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2017 , 9, 5907-5915	9.5	60
44	Proteogenomic studies on cancer drug resistance: towards biomarker discovery and target identification. <i>Expert Review of Proteomics</i> , 2017 , 14, 351-362	4.2	9

(2013-2017)

43	Simulated Sunlight-Mediated Photodynamic Therapy for Melanoma Skin Cancer by Titanium-Dioxide-Nanoparticle-Gold-Nanocluster-Graphene Heterogeneous Nanocomposites. <i>Small</i> , 2017 , 13, 1603935	11	50
42	Achievement of safer palladium nanocrystals by enlargement of {100} crystallographic facets. <i>Nanotoxicology</i> , 2017 , 11, 907-922	5.3	9
41	Crystallographic Facet-Induced Toxicological Responses by Faceted Titanium Dioxide Nanocrystals. <i>ACS Nano</i> , 2016 , 10, 6062-73	16.7	45
40	Potential hazards of superfine particles to human bronchial epithelial cells through inducing oxidative stress. <i>NanoImpact</i> , 2016 , 2, 93-98	5.6	4
39	Crystallographic facet-dependent stress responses by polyhedral lead sulfide nanocrystals and the potential Bafe-by-designDapproach. <i>Nano Research</i> , 2016 , 9, 3812-3827	10	11
38	Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. <i>Environmental Science & Environmental & Environment</i>	10.3	111
37	NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. <i>Small</i> , 2015 , 11, 2087-97	11	123
36	Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping. <i>ACS Nano</i> , 2015 , 9, 9357-72	16.7	86
35	Mammalian Cells Exhibit a Range of Sensitivities to Silver Nanoparticles that are Partially Explicable by Variations in Antioxidant Defense and Metallothionein Expression. <i>Small</i> , 2015 , 11, 3797-805	11	35
34	Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. <i>ACS Nano</i> , 2015 , 9, 3032-43	16.7	90
33	Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. <i>Small</i> , 2014 , 10, 385-98	11	207
32	PdO doping tunes band-gap energy levels as well as oxidative stress responses to a CoDIp-type semiconductor in cells and the lung. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6406-20	16.4	114
31	Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. <i>ACS Nano</i> , 2014 , 8, 1771-83	16.7	177
30	Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1 producing inflammasome. <i>ACS Nano</i> , 2014 , 8, 10280-92	16.7	123
29	Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. <i>Accounts of Chemical Research</i> , 2013 , 46, 607-21	24.3	448
28	Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. <i>ACS Nano</i> , 2013 , 7, 10048-65	16.7	131
27	Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. <i>ACS Nano</i> , 2013 , 7, 10834-49	16.7	153
26	Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. <i>ACS Nano</i> , 2013 , 7, 994-1005	16.7	456

25	Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. <i>ACS Nano</i> , 2013 , 7, 2352-68	16.7	232
24	Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. <i>Small</i> , 2013 , 9, 1776-85	11	97
23	Implementation of a multidisciplinary approach to solve complex nano EHS problems by the UC Center for the Environmental Implications of Nanotechnology. <i>Small</i> , 2013 , 9, 1428-43	11	29
22	Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. <i>Nano Letters</i> , 2012 , 12, 3050-61	11.5	142
21	Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. Journal of the American Chemical Society, 2012 , 134, 15790-804	16.4	315
20	Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. <i>ACS Nano</i> , 2012 , 6, 4349-68	16.7	631
19	Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. <i>ACS Nano</i> , 2012 , 6, 3745-59	16.7	279
18	Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. <i>ACS Nano</i> , 2012 , 6, 5366-80	16.7	275
17	Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. <i>ACS Nano</i> , 2011 , 5, 4434-47	16.7	287
16	Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. <i>ACS Nano</i> , 2011 , 5, 9772-87	16.7	159
15	Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. <i>ACS Nano</i> , 2011 , 5, 1805-17	16.7	280
14	High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. <i>ACS Nano</i> , 2011 , 5, 7284-95	16.7	154
13	Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. <i>ACS Nano</i> , 2011 , 5, 2756-2769	16.7	76
12	Positron emission tomography of human hepatocellular carcinoma xenografts in mice using copper (II)-64 chloride as a tracer with copper (II)-64 chloride. <i>Academic Radiology</i> , 2011 , 18, 1561-8	4.3	27
11	Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. <i>ACS Nano</i> , 2010 , 4, 7241-52	16.7	142
10	Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. <i>Environmental Science & Environmental Scie</i>	10.3	261
9	Potent anticancer activity of pyrrolidine dithiocarbamate-copper complex against cisplatin-resistant neuroblastoma cells. <i>Anti-Cancer Drugs</i> , 2008 , 19, 125-32	2.4	34
8	Synthesis and characterization of new copper thiosemicarbazone complexes with an ONNS quadridentate system: cell growth inhibition, S-phase cell cycle arrest and proapoptotic activities on cisplatin-resistant neuroblastoma cells. <i>Journal of Biological Inorganic Chemistry</i> , 2008 , 13, 47-55	3.7	49

LIST OF PUBLICATIONS

7	Interactions of the human telomeric DNA with terbium-amino acid complexes. <i>Journal of Inorganic Biochemistry</i> , 2006 , 100, 1646-52	4.2	35
6	Reversible B/Z-DNA transition under the low salt condition and non-B-form polydApolydT selectivity by a cubane-like europium-L-aspartic acid complex. <i>Biophysical Journal</i> , 2006 , 90, 3203-7	2.9	39
5	PolydA and polyrA self-structured by a europium and amino acid complex. FEBS Letters, 2006, 580, 3726	5 -3 8	18
4	Effect of praseodymium(III) on zinc(II) species in human interstitial fluid. <i>Biological Trace Element Research</i> , 2005 , 107, 101-11	4.5	1
3	Computer simulation of Pr(III) speciation in human interstitial fluid. <i>Chemical Speciation and Bioavailability</i> , 2004 , 16, 153-158		2
2	Computer simulation for effect of Pr(III) on Ca(II) speciation in human interstitial fluid. <i>Biological Trace Element Research</i> , 2003 , 94, 131-40	4.5	2
1	Computer simulation for effect of Pr(III) on Ca(II) speciation in human interstitial fluid. <i>Biological Trace Element Research</i> , 2003 , 95, 39-48	4.5	2