Anna Duarri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9132486/publications.pdf

Version: 2024-02-01

566801 676716 21 852 15 22 h-index citations g-index papers 23 23 23 1324 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Transcriptomics analysis of Ccl2/Cx3cr1/Crb1rd8 deficient mice provides new insights into the pathophysiology of progressive retinal degeneration. Experimental Eye Research, 2021, 203, 108424.	1.2	10
2	Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration. Molecular Therapy - Methods and Clinical Development, 2021, 20, 688-702.	1.8	22
3	Repopulation of decellularized retinas with hiPSC-derived retinal pigment epithelial and ocular progenitor cells shows cell engraftment, organization and differentiation. Biomaterials, 2021, 276, 121049.	5.7	13
4	Transplantation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in a Swine Model of Geographic Atrophy. International Journal of Molecular Sciences, 2021, 22, 10497.	1.8	10
5	Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages. Stem Cell Research and Therapy, 2021, 12, 581.	2.4	20
6	Impaired proteostasis in rare neurological diseases. Seminars in Cell and Developmental Biology, 2019, 93, 164-177.	2.3	14
7	Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective. European Journal of Medical Genetics, 2018, 61, 50-60.	0.7	19
8	Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain, 2017, 140, 2860-2878.	3.7	98
9	Generation of six multiple sclerosis patient-derived induced pluripotent stem cell lines. Stem Cell Research, 2017, 24, 155-159.	0.3	10
10	Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Cellular and Molecular Life Sciences, 2015, 72, 3387-3399.	2.4	24
11	Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23. Brain, 2015, 138, 2537-2552.	3.7	34
12	First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy. BMC Medical Genetics, 2015, 16, 51.	2.1	46
13	Functional Analysis Helps to Define KCNC3 Mutational Spectrum in Dutch Ataxia Cases. PLoS ONE, 2015, 10, e0116599.	1.1	26
14	The L450P mutation in KCND3 brings spinocerebellar ataxia and Brugada syndrome closer together. Neurogenetics, 2013, 14, 257-258.	0.7	15
15	Mutations in potassium channel <i>kcnd3</i> cause spinocerebellar ataxia type 19. Annals of Neurology, 2012, 72, 870-880.	2.8	121
16	Mutant GlialCAM Causes Megalencephalic Leukoencephalopathy with Subcortical Cysts, Benign Familial Macrocephaly, and Macrocephaly with Retardation and Autism. American Journal of Human Genetics, 2011, 88, 422-432.	2.6	148
17	Knockdown of MLC1 in primary astrocytes causes cell vacuolation: A MLC disease cell model. Neurobiology of Disease, 2011, 43, 228-238.	2.1	60
18	Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation. Brain, 2011, 134, 3342-3354.	3.7	63

Anna Duarri

#	Article	IF	CITATIONS
19	Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects. Human Molecular Genetics, 2008, 17, 3728-3739.	1.4	60
20	The N-terminal domain of the human eIF2 \hat{l}^2 subunit and the CK2 phosphorylation sites are required for its function. Biochemical Journal, 2006, 394, 227-236.	1.7	23
21	Cross talk between protein kinase CK2 and eukaryotic translation initiation factor eIF2 \hat{I}^2 subunit. Molecular and Cellular Biochemistry, 2005, 274, 53-61.	1.4	6