Warat Kongkitkul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9132267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Various Viscosity Types of Geomaterials in Shear and Their Mathematical Expression. Soils and Foundations, 2008, 48, 41-60.	3.1	93
2	Development of tunneling influence zones for adjacent pile foundations by numerical analyses. Tunnelling and Underground Space Technology, 2013, 34, 96-109.	6.2	79
3	High internal pressure induced fracture patterns in rock masses surrounding caverns: Experimental study using physical model tests. Engineering Geology, 2015, 197, 158-171.	6.3	45
4	Efficiency of Rice Husk Ash as Cementitious Material in High-Strength Cement-Admixed Clay. Advances in Civil Engineering, 2018, 2018, 1-11.	0.7	43
5	Viscous Behaviour of Unbound Granular Materials in Direct Shear. Soils and Foundations, 2008, 48, 297-318.	3.1	39
6	A theoretical framework to analyse the behaviour of polymer geosynthetic reinforcement in temperature-accelerated creep tests. Geosynthetics International, 2007, 14, 23-38.	2.9	34
7	Time histories of tensile force in geogrid arranged in two full-scale high walls. Geosynthetics International, 2010, 17, 12-32.	2.9	34
8	Modelling and Simulation of Rate-Dependent Stress-Strain Behaviour of Granular Materials in Shear. Soils and Foundations, 2008, 48, 175-194.	3.1	30
9	Influence of Curing Stress on One-Dimensional Yielding of Cement-Admixed Bangkok Clay at High Water Content. Soils and Foundations, 2011, 51, 351-357.	3.1	28
10	Effects of temperature on the rupture strength and elastic stiffness of geogrids. Geosynthetics International, 2012, 19, 106-123.	2.9	27
11	Investigation of failure behavior of continuous rock mass around cavern under high internal pressure. Tunnelling and Underground Space Technology, 2013, 34, 110-123.	6.2	26
12	Nonlinear load–strain modeling of polypropylene geogrids during constant rateâ€ofâ€strain loading. Polymer Engineering and Science, 2015, 55, 1617-1627.	3.1	26
13	Modelling of Ageing Effects on the Elasto-Viscoplastic Behaviour of Geomaterial. Soils and Foundations, 2008, 48, 155-174.	3.1	25
14	Rate-Dependent Load-Strain Behaviour of Geogrid Arranged in Sand Under Plane Strain Compression. Soils and Foundations, 2007, 47, 473-491.	3.1	23
15	Creep rupture curve for simultaneous creep deformation and degradation of geosynthetic reinforcement. Geosynthetics International, 2007, 14, 189-200.	2.9	23
16	Analysis of fracture propagation in a rock mass surrounding a tunnel under high internal pressure by the element-free Galerkin method. Computers and Geotechnics, 2014, 55, 78-90.	4.7	22
17	Simulation of geosynthetic load–strain–time behaviour by the non-linear three-component model. Geosynthetics International, 2014, 21, 244-255.	2.9	22
18	Equivalent void ratio controlling the mechanical properties of cementitious material-clay mixtures with high water content. Marine Georesources and Geotechnology, 2019, 37, 1151-1162.	2.1	17

WARAT KONGKITKUL

#	Article	IF	CITATIONS
19	FE simulation of viscous behavior of geogrid-reinforced sand under laboratory-scale plane-strain-compression testing. Geotextiles and Geomembranes, 2012, 31, 72-80.	4.6	16
20	Anisotropy in compressive strength and elastic stiffness of normal and polymer-modified asphalts. Soils and Foundations, 2014, 54, 94-108.	3.1	16
21	Behaviours of geosynthetic-reinforced asphalt pavements investigated by laboratory physical model tests on a pavement structure. Transportation Geotechnics, 2016, 8, 103-118.	4.5	15
22	Effects of Reinforcement type and Loading History on the Deformation of Reinforced Sand in Plane Strain Compression. Soils and Foundations, 2007, 47, 395-414.	3.1	13
23	Effects of Geosynthetic Reinforcement Type on the Strength and Stiffness of Reinforced Sand in Plane Strain Compression. Soils and Foundations, 2007, 47, 1109-1122.	3.1	12
24	Viscous Property of Toyoura Sand Over a Wide Range of Shear Deformation Rate and its Model Simulation. Soils and Foundations, 2009, 49, 231-247.	3.1	10
25	FEM simulation of viscous properties for granular materials considering the loading rate effect. Granular Matter, 2010, 12, 555-568.	2.2	9
26	FE simulation of rate-dependent behaviours of polymer geosynthetic reinforcements for an estimation of mobilized tensile force in a reinforced soil. Computers and Geotechnics, 2016, 80, 49-58.	4.7	7
27	Residual Deformation of Geosynthetic-Reinforced Sand in Plane Strain Compression Affected by Viscous Properties of Geosynthetic Reinforcement. Soils and Foundations, 2008, 48, 333-352.	3.1	6
28	Effects of loading rate on viscoplastic properties of polymer geosynthetics and its constitutive modeling. Polymer Engineering and Science, 2010, 50, 550-560.	3.1	6
29	A Simple Pneumatic Loading System Controlling Stress and Strain Rates for One-Dimensional Compression of Clay. Soils and Foundations, 2011, 51, 11-30.	3.1	6
30	Analytical and numerical modeling of pullout capacity and interaction between hexagonal wire mesh and silty sand backfill under an in-soil pullout test. Canadian Geotechnical Journal, 2003, 40, 886-899.	2.8	5
31	Role of geogrids in load transfer of pile-supported embankments. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2012, 165, 239-248.	1.0	3
32	Correlations between Strains in a Thin Asphalt Pavement Structure and Deflection Basins. Transportation Research Record, 2015, 2473, 83-90.	1.9	3
33	Inelastic Deformation of Sand Reinforced with Different Reinforcing Materials. Solid Mechanics and Its Applications, 2007, , 849-864.	0.2	2
34	Simple Dynamic Hammer for Evaluation of Physical Conditions of Pavement Structures. Transportation Research Record, 2011, 2204, 35-44.	1.9	2
35	Estimation of stress state-dependent elastic modulus of pavement structure materials using one-dimensional loading test. Road Materials and Pavement Design, 2021, 22, 245-267.	4.0	2
36	Comparison of the lifetime predicted by elastic analyses between two pavement structure candidates considering truck overloading. Road Materials and Pavement Design, 2022, 23, 1129-1156.	4.0	2

WARAT KONGKITKUL

#	Article	IF	CITATIONS
37	EFFECTS OF TEMPERATURE ON ELASTIC STIFFNESS OF A HDPE GEOGRID AND ITS MODEL SIMULATION. International Journal of GEOMATE, 0, , .	0.3	2
38	Hypoplastic Model for Simulation of Deformation Characteristics of Bangkok Soft Clay with Different Stress Paths. , 2010, , .		1
39	Simulating Rate-Dependent Behavior of Geogrid-Reinforced Sands by FEM. , 2010, , .		1
40	Deformation Characteristics of Asphaltic Concrete in Uniaxial Compression. , 2010, , .		1
41	Geosynthetic-reinforced flexible pavement in Thailand. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2012, 165, 249-258.	1.0	1
42	Study on Implementation Algorithm for Simulation the Softening with Strain Localization in Plane Strain Compression Behavior of Sand. , 2014, , .		1
43	Deep Excavation Induced Pile Movement in Bangkok Subsoil-A Numerical Investigation. , 2010, , .		Ο
44	FEM Analyses on Creep Characteristics and Strain Fields of Geogrid-Reinforced Sand. , 2011, , .		0
45	Evaluation of Guy Anchorage Strength in Clay for Transmission Tower. Journal of Testing and Evaluation, 2013, 41, 564-570.	0.7	Ο