
Xuefeng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/913217/publications.pdf Version: 2024-02-01

XUEFENC GAO

#	Article	IF	CITATIONS
1	Bio-inspired inclined nanohair arrays with tunable mechanical properties for effective directional condensed microdroplets self-jumping. Chemical Engineering Journal, 2022, 427, 130887.	6.6	8
2	Facile fabrication of biomimetic films with the microdome and tapered nanonipple hierarchical structure possessing high haze, high transmittance, anti-fouling and moisture self-cleaning functions. Chemical Engineering Journal, 2021, 404, 127101.	6.6	8
3	Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Research, 2021, 14, 1429-1434.	5.8	22
4	Copper-based high-efficiency condensation heat transfer interface consisting of superhydrophobic hierarchical microgroove and nanocone structure. Materials Today Physics, 2021, 19, 100407.	2.9	20
5	A numerical study on subcooled flow boiling heat transfer in tubes with various helical angles at underwater vehicles conditions. Journal of Thermal Analysis and Calorimetry, 2020, 141, 145-161.	2.0	4
6	High-Efficiency Boiling Heat Transfer Interfaces Composed of Electroplated Copper Nanocone Cores and Low-Thermal-Conductivity Nickel Nanocone Coverings. ACS Applied Materials & Interfaces, 2020, 12, 39902-39909.	4.0	21
7	Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation. ACS Applied Materials & Interfaces, 2020, 12, 24512-24520.	4.0	35
8	Superhydrophilic Composite Structure of Copper Microcavities and Nanocones for Enhancing Boiling Heat Transfer. Advanced Materials Interfaces, 2020, 7, 2000482.	1.9	19
9	Confined Growth and Controlled Coalescence/Self-Removal of Condensate Microdrops on a Spatially Heterogeneously Patterned Superhydrophilic–Superhydrophobic Surface. ACS Applied Materials & Interfaces, 2020, 12, 29946-29952.	4.0	12
10	Microdrop-Assisted Microdomain Hydrophilicization of Superhydrophobic Surfaces for High-Efficiency Nucleation and Self-Removal of Condensate Microdrops. ACS Applied Materials & Interfaces, 2019, 11, 7553-7558.	4.0	25
11	A Bioinspired, Highly Transparent Surface with Dryâ€Style Antifogging, Antifrosting, Antifouling, and Moisture Selfâ€Cleaning Properties. Macromolecular Rapid Communications, 2019, 40, e1800708.	2.0	38
12	Bioâ€Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer. Advanced Functional Materials, 2018, 28, 1800634.	7.8	68
13	Recent Progress in Bionic Condensate Microdrop Selfâ€Propelling Surfaces. Advanced Materials, 2017, 29, 1703002.	11.1	98
14	Design and Fabrication of a Tip‣ike ZnO Nanotube Array Structure with Condensate Microdrop Selfâ€₽ropelling Function. ChemNanoMat, 2016, 2, 1018-1022.	1.5	15
15	In Situ Growth of Densely Packed Single rystal Copper Nanocone Structure Films with Condensate Microdrop Selfâ€Removal Function on Copper Surfaces. Advanced Materials Interfaces, 2016, 3, 1600362.	1.9	29
16	Fabrication of Biomimetic Polymer Nanocone Films with Condensate Microdrop Selfâ€Removal Function. Advanced Materials Interfaces, 2015, 2, 1500238.	1.9	33
17	Copper-Based Ultrathin Nickel Nanocone Films with High-Efficiency Dropwise Condensation Heat Transfer Performance. ACS Applied Materials & Interfaces, 2015, 7, 11719-11723.	4.0	74
18	Condensate Microdrop Self-Propelling Aluminum Surfaces Based on Controllable Fabrication of Alumina Rod-Capped Nanopores. ACS Applied Materials & Interfaces, 2015, 7, 11079-11082.	4.0	55

XUEFENG GAO

#	Article	IF	CITATIONS
19	Clustered Ribbed-Nanoneedle Structured Copper Surfaces with High-Efficiency Dropwise Condensation Heat Transfer Performance. ACS Applied Materials & Interfaces, 2015, 7, 10660-10665.	4.0	139
20	Subcooled-Water Nonstickiness of Condensate Microdrop Self-Propelling Nanosurfaces. ACS Applied Materials & Interfaces, 2015, 7, 26391-26395.	4.0	42
21	Fabrication of Condensate Microdrop Selfâ€Propelling Porous Films of Cerium Oxide Nanoparticles on Copper Surfaces. Angewandte Chemie - International Edition, 2015, 54, 4876-4879.	7.2	106
22	Facile Fabrication of Anodic Alumina Rod-Capped Nanopore Films with Condensate Microdrop Self-Propelling Function. ACS Applied Materials & Interfaces, 2015, 7, 18206-18210.	4.0	39
23	Robust Nonsticky Superhydrophobicity by the Tapering of Aligned ZnO Nanorods. ChemPhysChem, 2014, 15, 858-861.	1.0	13
24	Bioâ€Inspired Highâ€Performance Antireflection and Antifogging Polymer Films. Small, 2014, 10, 2578-2582.	5.2	72
25	Efficient Self-Propelling of Small-Scale Condensed Microdrops by Closely Packed ZnO Nanoneedles. Journal of Physical Chemistry Letters, 2014, 5, 2084-2088.	2.1	139
26	Energy-Effective Frost-Free Coatings Based on Superhydrophobic Aligned Nanocones. ACS Applied Materials & Interfaces, 2014, 6, 8976-8980.	4.0	124
27	Self-ordered hard anodization in malonic acid and its application in tailoring alumina taper-nanopores with continuously tunable periods in the range of 290–490nm. Electrochimica Acta, 2013, 112, 327-332.	2.6	23
28	Tailoring Hexagonally Packed Metal Hollow-Nanocones and Taper-Nanotubes by Template-Induced Preferential Electrodeposition. ACS Applied Materials & Interfaces, 2013, 5, 10376-10380.	4.0	19
29	AFM, Tapping Mode. , 2012, , 99-99.		2
30	Facile Method for Modulating the Profiles and Periods of Self-Ordered Three-Dimensional Alumina Taper-Nanopores. ACS Applied Materials & Interfaces, 2012, 4, 5678-5683.	4.0	47
31	Controlled nanoscale diffusion-limited chemical etching for releasing polystyrene nanocones from recyclable alumina templates. Chemical Communications, 2012, 48, 11322.	2.2	11
32	Ab Initio DFT Simulations of Nanostructures. , 2012, , 11-17.		3
33	AFM. , 2012, , 83-83.		0
34	AC Electroosmosis: Basics and Lab-on-a-Chip Applications. , 2012, , 25-30.		1
35	Bioinspired Ribbed Nanoneedles with Robust Superhydrophobicity. Advanced Functional Materials, 2010, 20, 656-662.	7.8	182
36	Designing Superhydrophobic Porous Nanostructures with Tunable Water Adhesion. Advanced Materials, 2009, 21, 3799-3803.	11.1	439

XUEFENG GAO

#	Article	IF	CITATIONS
37	How does the leaf margin make the lotus surface dry as the lotus leaf floats on water?. Soft Matter, 2008, 4, 2232.	1.2	80
38	Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3, 178-182.	1.2	1,020
39	Effects of Rugged Nanoprotrusions on the Surface Hydrophobicity and Water Adhesion of Anisotropic Micropatterns. Langmuir, 2007, 23, 4886-4891.	1.6	113
40	Superior Water Repellency of Water Strider Legs with Hierarchical Structures:Â Experiments and Analysis. Langmuir, 2007, 23, 4892-4896.	1.6	334
41	Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet. Journal of the American Chemical Society, 2007, 129, 1478-1479.	6.6	426
42	Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research, 2005, 38, 644-652.	7.6	1,921
43	Water-repellent legs of water striders. Nature, 2004, 432, 36-36.	13.7	2,286
44	Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film. Journal of Physical Chemistry B, 2004, 108, 4586-4589.	1.2	46