Pei-Yuan Qian

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9132165/pei-yuan-qian-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 399
 13,383
 59
 91

 papers
 h-index
 g-index

 414
 15,762
 4.8
 6.65

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
399	Metagenomic and metatranscriptomic analyses reveal minor-yet-crucial roles of gut microbiome in deep-sea hydrothermal vent snail <i>Animal Microbiome</i> , 2022 , 4, 3	4.1	O
398	Proteomics and Transcriptomics Uncover Key Processes for Elasnin Tolerance in Methicillin-Resistant Staphylococcus aureus <i>MSystems</i> , 2022 , e0139321	7.6	2
397	The Morphology, Mitogenome, Phylogenetic Position, and Symbiotic Bacteria of a New Species of Sclerolinum (Annelida: Siboglinidae) in the South China Sea. <i>Frontiers in Marine Science</i> , 2022 , 8,	4.5	1
396	Elasnin Effectively Eradicates Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus Biofilms <i>Microbiology Spectrum</i> , 2022 , 10, e0232021	8.9	0
395	Comparative transcriptomic analysis of and onboard fixed deep-sea limpets reveals sample preparation-related differences <i>IScience</i> , 2022 , 25, 104092	6.1	O
394	Complete mitochondrial genome of (Polychaeta: Alvinellidae) <i>Mitochondrial DNA Part B: Resources</i> , 2022 , 7, 786-788	0.5	
393	Profiling Signal Transduction in Global Marine Biofilms Frontiers in Microbiology, 2021 , 12, 768926	5.7	4
392	Hydraulic Fracturing Return Fluids from Offshore Hydrocarbon Extraction Present New Risks to Marine Ecosystems. <i>Environmental Science & Ecosystems</i> , 2021, 55, 4199-4201	10.3	3
391	Global Genome Mining Reveals a Cytochrome P450-Catalyzed Cyclization of Crownlike Cyclodipeptides with Neuroprotective Activity. <i>Organic Letters</i> , 2021 , 23, 6601-6605	6.2	1
390	Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters. <i>Frontiers in Microbiology</i> , 2021 , 12, 635389	5.7	1
389	Crystal structure of parallel G-quadruplex formed by the two-repeat ALS- and FTD-related GGGGCC sequence. <i>Nucleic Acids Research</i> , 2021 , 49, 5881-5890	20.1	4
388	Unique phage-bacterium interplay in sponge holobionts from the southern Okinawa Trough hydrothermal vent. <i>Environmental Microbiology Reports</i> , 2021 , 13, 675-683	3.7	1
387	Genomic Signatures Supporting the Symbiosis and Formation of Chitinous Tube in the Deep-Sea Tubeworm Paraescarpia echinospica. <i>Molecular Biology and Evolution</i> , 2021 , 38, 4116-4134	8.3	8
386	Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. <i>Molecular Biology and Evolution</i> , 2021 , 38, 502-518	8.3	14
385	Horseshoe crab genomes reveal the evolution of genes and microRNAs after three rounds of whole genome duplication. <i>Communications Biology</i> , 2021 , 4, 83	6.7	8
384	Discovery of Antibiofilm Activity of Elasnin against Marine Biofilms and Its Application in the Marine Antifouling Coatings. <i>Marine Drugs</i> , 2021 , 19,	6	4
383	Expanding our understanding of marine viral diversity through metagenomic analyses of biofilms. <i>Marine Life Science and Technology</i> , 2021 , 3, 395-404	4.5	2

(2020-2021)

382	Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. <i>Nature Communications</i> , 2021 , 12, 1165	17.4	8
381	Discovery, Bioactivity Evaluation, Biosynthetic Gene Cluster Identification, and Heterologous Expression of Novel Albofungin Derivatives. <i>Frontiers in Microbiology</i> , 2021 , 12, 635268	5.7	O
380	Phylogenetic Relationships and Adaptation in Deep-Sea Mussels: Insights from Mitochondrial Genomes. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	3
379	Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. <i>Nature Chemical Biology</i> , 2021 , 17, 576-584	11.7	5
378	Insights into the vision of the hadal snailfish Pseudoliparis swirei through proteomic analysis of the eye. <i>Proteomics</i> , 2021 , 21, e2100118	4.8	
377	Comparative proteomic investigation of multiple methicillin-resistant strains generated through adaptive laboratory evolution. <i>IScience</i> , 2021 , 24, 102950	6.1	5
376	Hidden Historical Habitat-Linked Population Divergence and Contemporary Gene Flow of a Deep-Sea Patellogastropod Limpet. <i>Molecular Biology and Evolution</i> , 2021 , 38, 5640-5654	8.3	2
375	Arms race in a cell: genomic, transcriptomic, and proteomic insights into intracellular phage-bacteria interplay in deep-sea snail holobionts. <i>Microbiome</i> , 2021 , 9, 182	16.6	O
374	Antifouling mechanism of natural product-based coatings investigated by digital holographic microscopy. <i>Journal of Materials Science and Technology</i> , 2021 , 84, 200-207	9.1	5
373	Albofungin and chloroalbofungin: antibiotic crystals with 2D but not 3D isostructurality. <i>Acta Crystallographica Section C, Structural Chemistry</i> , 2020 , 76, 1100-1107	0.8	2
372	Population Genetic Structure and Gene Expression Plasticity of the Deep-Sea Vent and Seep Squat Lobster Shinkaia crosnieri. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	3
371	Correlations Between Prokaryotic Microbes and Stress-Resistant Algae in Different Corals Subjected to Environmental Stress in Hong Kong. <i>Frontiers in Microbiology</i> , 2020 , 11, 686	5.7	5
370	Nearest vent, dearest friend: biodiversity of Tiancheng vent field reveals cross-ridge similarities in the Indian Ocean. <i>Royal Society Open Science</i> , 2020 , 7, 200110	3.3	16
369	Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. <i>Nature Communications</i> , 2020 , 11, 3051	17.4	17
368	A novel chresdihydrochalcone from Streptomyces chrestomyceticus exhibiting activity against Gram-positive bacteria. <i>Journal of Antibiotics</i> , 2020 , 73, 429-434	3.7	4
367	Impacts of elevated temperature and pCO2 on the brooded larvae of Pocillopora damicornis from Luhuitou Reef, China: evidence for local acclimatization. <i>Coral Reefs</i> , 2020 , 39, 331-344	4.2	8
366	The Scaly-foot Snail genome and implications for the origins of biomineralised armour. <i>Nature Communications</i> , 2020 , 11, 1657	17.4	28
365	Combining a bio-based polymer and a natural antifoulant into an eco-friendly antifouling coating. <i>Biofouling</i> , 2020 , 36, 200-209	3.3	6

364	Insights into the Synthesis, Secretion and Curing of Barnacle Cyprid Adhesive via Transcriptomic and Proteomic Analyses of the Cement Gland. <i>Marine Drugs</i> , 2020 , 18,	6	4
363	E rom the Nature for the Nature⊡An Eco-Friendly Antifouling Coating Consisting of Poly(lactic acid)-Based Polyurethane and Natural Antifoulant. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1671-1678	8.3	29
362	Impact of Ocean Warming and Acidification on Symbiosis Establishment and Gene Expression Profiles in Recruits of Reef Coral. <i>Frontiers in Microbiology</i> , 2020 , 11, 532447	5.7	3
361	Exploring the Influence of Signal Molecules on Marine Biofilms Development. <i>Frontiers in Microbiology</i> , 2020 , 11, 571400	5.7	7
360	Reply to: Macrocyclic colibactins. <i>Nature Chemistry</i> , 2020 , 12, 1007	17.6	1
359	Genomic, transcriptomic, and proteomic insights into the symbiosis of deep-sea tubeworm holobionts. <i>ISME Journal</i> , 2020 , 14, 135-150	11.9	26
358	Marine bacterial extracts as a new rich source of drugs against Alzheimer's disease. <i>Journal of Neurochemistry</i> , 2020 , 152, 493-508	6	4
357	Marine natural products as antifouling molecules - a mini-review (2014-2020). <i>Biofouling</i> , 2020 , 36, 1210)-31.326	15
356	Comparative Proteomics on Deep-Sea Amphipods after in Situ Copper Exposure. <i>Environmental Science & Environmental Science & E</i>	10.3	5
355	Marine biofilms constitute a bank of hidden microbial diversity and functional potential. <i>Nature Communications</i> , 2019 , 10, 517	17.4	47
354	Signatures of Divergence, Invasiveness, and Terrestrialization Revealed by Four Apple Snail Genomes. <i>Molecular Biology and Evolution</i> , 2019 , 36, 1507-1520	8.3	33
353	Distribution, diversity and functional dissociation of the mac genes in marine biofilms. <i>Biofouling</i> , 2019 , 35, 230-243	3.3	6
352	A Chemical-Intervention Strategy To Circumvent Peptide Hydrolysis by d-Stereoselective Peptidases. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 10466-10472	8.3	6
351	The mitochondrial genome of the deep-sea limpet (Patellogastropoda: Pectinodontidae). <i>Mitochondrial DNA Part B: Resources</i> , 2019 , 4, 3175-3176	0.5	5
350	Asymmetric Total Synthesis Enables Discovery of Antibacterial Activity of Siladenoserinols A and H. <i>Organic Letters</i> , 2019 , 21, 9704-9708	6.2	7
349	HostBymbiont Interactions in Deep-Sea Chemosymbiotic Vesicomyid Clams: Insights From Transcriptome Sequencing. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	9
348	Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. <i>Nature Chemistry</i> , 2019 , 11, 880-889	17.6	37
347	Metagenomic Analysis of Zinc Surface-Associated Marine Biofilms. <i>Microbial Ecology</i> , 2019 , 77, 406-416	4.4	14

(2018-2019)

346	Gut Microbial Divergence between Two Populations of the Hadal Amphipod Hirondellea gigas. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	10
345	Diurnally Fluctuating CO Modifies the Physiological Responses of Coral Recruits Under Ocean Acidification. <i>Frontiers in Physiology</i> , 2018 , 9, 1952	4.6	11
344	The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea. <i>Extremophiles</i> , 2018 , 22, 499-510	3	12
343	The regulatory role of arginine kinase during larval settlement of the bryozoan Bugula neritina. <i>Marine Biology</i> , 2018 , 165, 1	2.5	3
342	Resistance to nonribosomal peptide antibiotics mediated by D-stereospecific peptidases. <i>Nature Chemical Biology</i> , 2018 , 14, 381-387	11.7	25
341	HSP90 regulates larval settlement of the bryozoan through the nitric oxide pathway. <i>Journal of Experimental Biology</i> , 2018 , 221,	3	4
340	The mitochondrial genome of the deep-sea tubeworm (Siboglinidae, Annelida) and its phylogenetic implications. <i>Mitochondrial DNA Part B: Resources</i> , 2018 , 3, 131-132	0.5	8
339	Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida). <i>Molecular Phylogenetics and Evolution</i> , 2018 , 125, 220-231	4.1	44
338	Season structures prokaryotic partners but not algal symbionts in subtropical hard corals. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 4963-4973	5.7	13
337	Exploring coral microbiome assemblages in the South China Sea. <i>Scientific Reports</i> , 2018 , 8, 2428	4.9	13
336	Anti-biofilm effect of a butenolide/polymer coating and metatranscriptomic analyses. <i>Biofouling</i> , 2018 , 34, 111-122	3.3	22
335	Dysregulation of Intestinal Health by Environmental Pollutants: Involvement of the Estrogen Receptor and Aryl Hydrocarbon Receptor. <i>Environmental Science & Environmental Sci</i>	0 ^{10.3}	52
334	Genome Reduction in Species within the Gut of an Amphipod from the Ocean's Deepest Point. <i>MSystems</i> , 2018 , 3,	7.6	14
333	De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish. <i>BMC Genomics</i> , 2018 , 19, 394	4.5	22
332	Paenialvin A-D, four peptide antibiotics produced by Paenibacillus alvei DSM 29. <i>Journal of Antibiotics</i> , 2018 , 71, 769-777	3.7	5
331	Population genetic structure of the deep-sea mussel s (Bivalvia: Mytilidae) in the Northwest Pacific. <i>Evolutionary Applications</i> , 2018 , 11, 1915-1930	4.8	15
330	Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. <i>Nature Communications</i> , 2018 , 9, 3273	17.4	38
329	A novel assessment of the traction forces upon settlement of two typical marine fouling invertebrates using PDMS micropost arrays. <i>Biology Open</i> , 2018 , 7,	2.2	1

328	Toward understanding barnacle cementing by characterization of one cement protein-100kDa in Amphibalanus amphitrite. <i>Biochemical and Biophysical Research Communications</i> , 2018 , 495, 969-975	3.4	10
327	Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost. <i>Coral Reefs</i> , 2018 , 37, 71-79	4.2	11
326	Identification of Barnacle Shell Proteins by Transcriptome and Proteomic Approaches 2018 , 105-112		2
325	Rational design of new cyclic analogues of the antimicrobial lipopeptide tridecaptin A. <i>Chemical Communications</i> , 2018 , 54, 10634-10637	5.8	12
324	Regeneration and utilization of nutrients during collapse of a Mesodinium rubrum red tide and its influence on phytoplankton species composition. <i>Science China Earth Sciences</i> , 2018 , 61, 1384-1396	4.6	4
323	Exploring the regulatory role of nitric oxide (NO) and the NO-p38MAPK/cGMP pathway in larval settlement of the bryozoan Bugula neritina. <i>Biofouling</i> , 2018 , 34, 545-556	3.3	7
322	Genome-wide discovery of single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) in deep-sea mussels: Potential use in population genomics and cross-species application. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 2017 , 137, 318-326	2.3	23
321	Linking genomic responses of gonads with reproductive impairment in marine medaka (Oryzias melastigma) exposed chronically to the chemopreventive and antifouling agent, 3,3'-diindolylmethane (DIM). <i>Aquatic Toxicology</i> , 2017 , 183, 135-143	5.1	8
320	Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria. <i>Microbial Ecology</i> , 2017 , 74, 1-5	4.4	53
319	Molecular adaptation in the world's deepest-living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas. <i>Molecular Ecology</i> , 2017 , 26, 3732-3743	5.7	37
318	Optimization of antifouling coatings incorporating butenolide, a potent antifouling agent via field and laboratory tests. <i>Progress in Organic Coatings</i> , 2017 , 109, 22-29	4.8	16
317	Temperature shapes coral-algal symbiosis in the South China Sea. <i>Scientific Reports</i> , 2017 , 7, 40118	4.9	30
316	Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species. <i>Scientific Reports</i> , 2017 , 7, 46205	4.9	24
315	Microbiome dynamics in early life stages of the scleractinian coral Acropora gemmifera in response to elevated pCO. <i>Environmental Microbiology</i> , 2017 , 19, 3342-3352	5.2	19
314	Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6304-6309	8.3	60
313	Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. <i>Nature Ecology and Evolution</i> , 2017 , 1, 121	12.3	160
312	Genome Reduction and Microbe-Host Interactions Drive Adaptation of a Sulfur-Oxidizing Bacterium Associated with a Cold Seep Sponge. <i>MSystems</i> , 2017 , 2,	7.6	23
311	A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. <i>Nature Communications</i> , 2017 , 8, 14888	17.4	139

(2016-2017)

310	Identification of Molecular Targets for 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in Teleosts: New Insight into Mechanism of Toxicity. <i>Environmental Science & Dechnology</i> , 2017 , 51, 1840-1847	10.3	20
309	Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral <i>Pocillopora damicornis</i>. <i>Biogeosciences</i> , 2017 , 14, 5741-5752	4.6	12
308	Thielavins W-ZIINew Antifouling Thielavins from the Marine-Derived Fungus Thielavia sp. UST030930-004. <i>Marine Drugs</i> , 2017 , 15,	6	6
307	Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. <i>Scientific Reports</i> , 2017 , 7, 9320	4.9	15
306	Preparation, Structure, and Potent Antifouling Activity of Sclerotioramine Derivatives. <i>Marine Biotechnology</i> , 2017 , 19, 372-378	3.4	22
305	Comparative Transcriptomic Analysis Reveals Candidate Genes and Pathways Involved in Larval Settlement of the Barnacle Megabalanus volcano. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	6
304	Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012. <i>Marine Drugs</i> , 2017 , 15,	6	43
303	Temperature-Driven Local Acclimatization of Hosted by the Coral at Hainan Island, China. <i>Frontiers in Microbiology</i> , 2017 , 8, 2487	5.7	11
302	Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. <i>Nature Chemical Biology</i> , 2016 , 12, 773-5	11.7	62
301	Proteomic response of methicillin-resistant S. aureus to a synergistic antibacterial drug combination: a novel erythromycin derivative and oxacillin. <i>Scientific Reports</i> , 2016 , 6, 19841	4.9	20
300	Secretory locations of SIPC in Amphibalanus amphitrite cyprids and a novel function of SIPC in biomineralization. <i>Scientific Reports</i> , 2016 , 6, 29376	4.9	8
299	Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors. <i>Global Change Biology</i> , 2016 , 22, 2054-68	11.4	48
298	Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. <i>BMC Bioinformatics</i> , 2016 , 17, 135	3.6	246
297	The mitochondrial genome of the deep-sea snail Provanna sp. (Gastropoda: Provannidae). <i>Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis,</i> 2016 , 27, 4026-4027	1.3	3
296	Cochliomycin A inhibits the larval settlement of Amphibalanus amphitrite by activating the NO/cGMP pathway. <i>Biofouling</i> , 2016 , 32, 35-44	3.3	10
295	Archive of bacterial community in anhydrite crystals from a deep-sea basin provides evidence of past oil-spilling in a benthic environment in the Red Sea. <i>Biogeosciences</i> , 2016 , 13, 6405-6417	4.6	1
294	Genomic and Transcriptomic Evidence for Carbohydrate Consumption among Microorganisms in a Cold Seep Brine Pool. <i>Frontiers in Microbiology</i> , 2016 , 7, 1825	5.7	19
293	In Silico Prediction of Neuropeptides/Peptide Hormone Transcripts in the Cheilostome Bryozoan Bugula neritina. <i>PLoS ONE</i> , 2016 , 11, e0160271	3.7	3

292	Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting. <i>Molecular Ecology</i> , 2016 , 25, 1958-71	5.7	4
291	Characterization of Arginine Kinase in the Barnacle Amphibalanus Amphitrite and Its Role in the Larval Settlement. <i>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution</i> , 2016 , 326, 237-49	1.8	4
290	The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. <i>Environmental Microbiology</i> , 2016 , 18, 2481-94	5.2	37
289	Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments. <i>Science Bulletin</i> , 2016 , 61, 1176-1186	10.6	11
288	Delta-proteobacterial SAR324 group in hydrothermal plumes on the South Mid-Atlantic Ridge. <i>Scientific Reports</i> , 2016 , 6, 22842	4.9	12
287	Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification. <i>Scientific Reports</i> , 2016 , 6, 35971	4.9	11
286	Family-wide Structural Characterization and Genomic Comparisons Decode the Diversity-oriented Biosynthesis of Thalassospiramides by Marine Proteobacteria. <i>Journal of Biological Chemistry</i> , 2016 , 291, 27228-27238	5.4	7
285	The deepest mitochondrial genome sequenced from Mariana Trench (Amphipoda). <i>Mitochondrial DNA Part B: Resources</i> , 2016 , 1, 802-803	0.5	11
284	Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea. <i>AMB Express</i> , 2016 , 6, 102	4.1	14
283	Chronic Exposure of Marine Medaka (Oryzias melastigma) to 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. <i>Environmental Science & Environmental Science</i>	10.3	33
282	An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community. <i>Acta Oceanologica Sinica</i> , 2016 , 35, 131-136	1	7
281	High-throughput transcriptome sequencing reveals the combined effects of key e-waste contaminants, decabromodiphenyl ether (BDE-209) and lead, in zebrafish larvae. <i>Environmental Pollution</i> , 2016 , 214, 324-333	9.3	23
2 80	Endocrine Disruption throughout the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis in Marine Medaka (Oryzias melastigma) Chronically Exposed to the Antifouling and Chemopreventive Agent, 3,3'-Diindolylmethane (DIM). <i>Chemical Research in Toxicology</i> , 2016 , 29, 1020-8	4	16
279	Post-translational modifications are enriched within protein functional groups important to bacterial adaptation within a deep-sea hydrothermal vent environment. <i>Microbiome</i> , 2016 , 4, 49	16.6	24
278	Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene. <i>Genome Biology and Evolution</i> , 2015 , 7, 2310-20	3.9	40
277	Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea. <i>Antonie Van Leeuwenhoek</i> , 2015 , 108, 461-71	2.1	2
276	siRNA transfection in larvae of the barnacle Amphibalanus amphitrite. <i>Journal of Experimental Biology</i> , 2015 , 218, 2505-9	3	4
275	Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp. <i>Marine Biotechnology</i> , 2015 , 17, 408-15	3.4	25

(2015-2015)

274	Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis. <i>Scientific Reports</i> , 2015 , 5, 9383	4.9	75	
273	Low-Toxicity Diindol-3-ylmethanes as Potent Antifouling Compounds. <i>Marine Biotechnology</i> , 2015 , 17, 624-32	3.4	31	
272	Phylogenetic diversity of nitrogen-utilizing genes in hydrothermal chimneys from 3 middle ocean ridges. <i>Extremophiles</i> , 2015 , 19, 1173-82	3	5	
271	Relationship between metal and polybrominated diphenyl ether (PBDE) body burden and health risks in the barnacle Balanus amphitrite. <i>Marine Pollution Bulletin</i> , 2015 , 100, 383-392	6.7	13	
270	Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. <i>Chemosphere</i> , 2015 , 119, 1075-1083	8.4	24	
269	Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. <i>Journal of Proteome Research</i> , 2015 , 14, 304-17	5.6	61	
268	Transcriptome and proteome dynamics in larvae of the barnacle Balanus Amphitrite from the Red Sea. <i>BMC Genomics</i> , 2015 , 16, 1063	4.5	10	
267	Proteomic Changes Associated with Successive Reproductive Periods in Male Polychaetous Neanthes arenaceodentata. <i>Scientific Reports</i> , 2015 , 5, 13561	4.9	1	
266	High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. <i>Scientific Reports</i> , 2015 , 5, 16597	4.9	58	
265	p38 MAPK regulates PKA\u00e4nd CUB-serine protease in Amphibalanus amphitrite cyprids. <i>Scientific Reports</i> , 2015 , 5, 14767	4.9	4	
264	Selective phosphorylation during early macrophage differentiation. <i>Proteomics</i> , 2015 , 15, 3731-43	4.8	4	
263	Genome sequence of the pink-pigmented marine bacterium Loktanella hongkongensis type strain (UST950701-009P(T)), a representative of the Roseobacter group. <i>Standards in Genomic Sciences</i> , 2015 , 10, 51		1	
262	Nitric oxide inhibits larval settlement in Amphibalanus amphitrite cyprids by repressing muscle locomotion and molting. <i>Proteomics</i> , 2015 , 15, 3854-64	4.8	7	
261	Critical Intermediates Reveal New Biosynthetic Events in the Enigmatic Colibactin Pathway. <i>ChemBioChem</i> , 2015 , 16, 1715-9	3.8	49	
260	Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool. <i>Environmental Microbiology</i> , 2015 , 17, 4089-104	5.2	20	
259	Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. <i>Frontiers in Cellular and Infection Microbiology</i> , 2015 , 5, 40	5.9	29	
258	Microbial community changes along the active seepage site of one cold seep in the Red Sea. <i>Frontiers in Microbiology</i> , 2015 , 6, 739	5.7	9	
257	Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell. <i>PLoS ONE</i> , 2015 , 10, e0133866	3.7	15	

256	Mechanism of action of thalassospiramides, a new class of calpain inhibitors. <i>Scientific Reports</i> , 2015 , 5, 8783	4.9	13
255	Hepatic proteomic responses in marine medaka (Oryzias melastigma) chronically exposed to antifouling compound butenolide [5-octylfuran-2(5H)-one] or 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOIT). <i>Environmental Science & Environmental & Env</i>	10.3	30
254	Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009-2014. <i>Biofouling</i> , 2015 , 31, 101-22	3.3	132
253	Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea). <i>PLoS ONE</i> , 2015 , 10, e0140766	3.7	5
252	Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora. <i>PeerJ</i> , 2015 , 3, e890	3.1	17
251	Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis. <i>Frontiers in Microbiology</i> , 2014 , 5, 799	5.7	9
250	Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. <i>Scientific Reports</i> , 2014 , 4, 6534	4.9	15
249	A high-resolution LC-MS-based secondary metabolite fingerprint database of marine bacteria. <i>Scientific Reports</i> , 2014 , 4, 6537	4.9	15
248	Nontoxic piperamides and their synthetic analogues as novel antifouling reagents. <i>Biofouling</i> , 2014 , 30, 473-81	3.3	9
247	Proteomic changes in brain tissues of marine medaka (Oryzias melastigma) after chronic exposure to two antifouling compounds: butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT). <i>Aquatic Toxicology</i> , 2014 , 157, 47-56	5.1	26
246	Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans. <i>Biofouling</i> , 2014 , 30, 921-8	3.3	2
245	First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology. <i>Biofouling</i> , 2014 , 30, 169-81	3.3	38
244	Pyrosequencing reveals the microbial communities in the Red Sea sponge Carteriospongia foliascens and their impressive shifts in abnormal tissues. <i>Microbial Ecology</i> , 2014 , 68, 621-32	4.4	23
243	Proteomics insights: proteins related to larval attachment and metamorphosis of marine invertebrates. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	7
242	Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea. <i>Frontiers in Microbiology</i> , 2014 , 5, 37	5.7	21
241	In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system. <i>Scientific Reports</i> , 2014 , 4, 3587	4.9	27
240	Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. <i>Scientific Reports</i> , 2014 , 4, 6647	4.9	31
239	Quantitative proteomics study of larval settlement in the Barnacle Balanus amphitrite. <i>PLoS ONE</i> , 2014 , 9, e88744	3.7	24

238	Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. <i>PLoS ONE</i> , 2014 , 9, e90053	3.7	64
237	Toward understanding the dynamics of microbial communities in an estuarine system. <i>PLoS ONE</i> , 2014 , 9, e94449	3.7	19
236	Microbial sulfur cycle in two hydrothermal chimneys on the Southwest Indian Ridge. MBio, 2014, 5, e009	9 8 0⊱13	47
235	Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge. <i>Environmental Microbiology</i> , 2014 , 16, 3548-61	5.2	51
234	Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus spongiarum". <i>MBio</i> , 2014 , 5, e00079-14	7.8	68
233	Effect of copper treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis. <i>MBio</i> , 2014 , 5, e01980	7.8	24
232	Larval vision contributes to gregarious settlement in barnacles: adult red fluorescence as a possible visual signal. <i>Journal of Experimental Biology</i> , 2014 , 217, 743-50	3	29
231	Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma). <i>Aquatic Toxicology</i> , 2014 , 149, 116-25	5.1	43
230	Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement. <i>Microbial Ecology</i> , 2014 , 68, 81-93	4.4	18
229	Deep sequencing of Myxilla (Ectyomyxilla) methanophila, an epibiotic sponge on cold-seep tubeworms, reveals methylotrophic, thiotrophic, and putative hydrocarbon-degrading microbial associations. <i>Microbial Ecology</i> , 2013 , 65, 450-61	4.4	17
228	Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge. <i>Biofouling</i> , 2013 , 29, 789-802	3.3	6
227	Polybrominated diphenyl ethers do not affect metamorphosis but alter the proteome of the invasive slipper limpet Crepidula onyx. <i>Marine Pollution Bulletin</i> , 2013 , 73, 273-81	6.7	3
226	Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools. <i>Scientific Reports</i> , 2013 , 3, 1748	4.9	23
225	Understanding the regulation of estivation in a freshwater snail through iTRAQ-based comparative proteomics. <i>Journal of Proteome Research</i> , 2013 , 12, 5271-80	5.6	39
224	Antifouling activity of secondary metabolites isolated from chinese marine organisms. <i>Marine Biotechnology</i> , 2013 , 15, 552-8	3.4	37
223	Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete Pseudopolydora vexillosa. <i>Journal of Proteome Research</i> , 2013 , 12, 1344-58	5.6	11
222	Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria. Journal of the American Chemical Society, 2013 , 135, 1155-62	16.4	47
221	Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. <i>Journal of Antibiotics</i> , 2013 , 66, 219-23	3.7	69

220	Mini-review: Molecular mechanisms of antifouling compounds. <i>Biofouling</i> , 2013 , 29, 381-400	3.3	85
219	Caspase-3-dependent apoptosis of citreamicin Enduced HeLa cells is associated with reactive oxygen species generation. <i>Chemical Research in Toxicology</i> , 2013 , 26, 1055-63	4	12
218	iTRAQ-based proteomic profiling of the barnacle Balanus amphitrite in response to the antifouling compound meleagrin. <i>Journal of Proteome Research</i> , 2013 , 12, 2090-100	5.6	33
217	Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses. <i>Scientific Reports</i> , 2013 , 3, 3180	4.9	22
216	Proteomic response of marine invertebrate larvae to ocean acidification and hypoxia during metamorphosis and calcification. <i>Journal of Experimental Biology</i> , 2013 , 216, 4580-9	3	24
215	Profundibacterium mesophilum gen. nov., sp. nov., a novel member in the family Rhodobacteraceae isolated from deep-sea sediment in the Red Sea, Saudi Arabia. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2013 , 63, 1007-1012	2.2	18
214	Bio-assembled nanocomposites in conch shells exhibit giant electret hysteresis. <i>Advanced Materials</i> , 2013 , 25, 711-8	24	14
213	Response of bacterioplankton to a glucose gradient in the absence of lysis and grazing. <i>FEMS Microbiology Ecology</i> , 2013 , 85, 443-51	4.3	8
212	Antifouling Indole Alkaloids from Two Marine Derived Fungi. <i>Natural Product Communications</i> , 2013 , 8, 1934578X1300800	0.9	3
211	Characterization of two 20kDa-cement protein (cp20k) homologues in Amphibalanus amphitrite. <i>PLoS ONE</i> , 2013 , 8, e64130	3.7	28
210	MKK3 was involved in larval settlement of the barnacle Amphibalanus amphitrite through activating the kinase activity of p38MAPK. <i>PLoS ONE</i> , 2013 , 8, e69510	3.7	15
209	Proteomic changes between male and female worms of the polychaetous annelid Neanthes arenaceodentata before and after spawning. <i>PLoS ONE</i> , 2013 , 8, e72990	3.7	4
208	Artifactual pyrosequencing reads in multiple-displacement-amplified sediment metagenomes from the Red Sea. <i>PeerJ</i> , 2013 , 1, e69	3.1	4
207	Antifouling indole alkaloids from two marine derived fungi. <i>Natural Product Communications</i> , 2013 , 8, 329-32	0.9	21
206	Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds. <i>Biofouling</i> , 2012 , 28, 857-64	3.3	26
205	First proteome of the egg perivitelline fluid of a freshwater gastropod with aerial oviposition. Journal of Proteome Research, 2012 , 11, 4240-8	5.6	47
204	Polybrominated diphenyl ethers (PBDEs) alter larval settlement of marine intertidal organisms across three phyla via reducing bacterial abundance on the biofilms. <i>Environmental Science & Technology</i> , 2012 , 46, 7772-81	10.3	15
203	Diterpenoids and steroids from Gorgonian Subergorgia mollis. <i>Chemistry of Natural Compounds</i> , 2012 , 48, 512-515	0.7	9

202	Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8625-32	16.4	121	
201	Analysis of Pacific oyster larval proteome and its response to high-CO2. <i>Marine Pollution Bulletin</i> , 2012 , 64, 2160-7	6.7	62	
200	Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 7173-84	4.8	79	
199	Antifouling Activity of Marine Natural Products 2012 , 749-821		5	
198	Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans. <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , 2012 , 162, 113-9	2.3	13	
197	Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. <i>ACS Chemical Biology</i> , 2012 , 7, 1049-58	4.9	38	
196	Comparative glycoproteome analysis: dynamics of protein glycosylation during metamorphic transition from Pelagic to Benthic life stages in three invertebrates. <i>Journal of Proteome Research</i> , 2012 , 11, 1330-40	5.6	11	
195	Indole alkaloids from marine-derived fungus Aspergillus sydowii SCSIO 00305. <i>Journal of Antibiotics</i> , 2012 , 65, 109-11	3.7	47	
194	Expression of calmodulin and myosin light chain kinase during larval settlement of the Barnacle Balanus amphitrite. <i>PLoS ONE</i> , 2012 , 7, e31337	3.7	17	
193	Gel-based and gel-free identification of proteins and phosphopeptides during egg-to-larva transition in polychaete Neanthes arenaceodentata. <i>PLoS ONE</i> , 2012 , 7, e38814	3.7	8	
192	The mode of action of isocyanide in three aquatic organisms, Balanus amphitrite, Bugula neritina and Danio rerio. <i>PLoS ONE</i> , 2012 , 7, e45442	3.7	17	
191	Evidence for the involvement of p38 MAPK activation in barnacle larval settlement. <i>PLoS ONE</i> , 2012 , 7, e47195	3.7	22	
190	Four new antibacterial xanthones from the marine-derived actinomycetes Streptomyces caelestis. <i>Marine Drugs</i> , 2012 , 10, 2571-83	6	36	
189	Steroids of soft coral Scleronephthya sp. from the South China Sea. <i>Chemistry of Natural Compounds</i> , 2012 , 48, 341-343	0.7	2	
188	Five new amicoumacins isolated from a marine-derived bacterium Bacillus subtilis. <i>Marine Drugs</i> , 2012 , 10, 319-28	6	48	
187	The regulatory role of the NO/cGMP signal transduction cascade during larval attachment and metamorphosis of the barnacle Balanus (=Amphibalanus) amphitrite. <i>Journal of Experimental Biology</i> , 2012 , 215, 3813-22	3	26	
186	Effects of poly-ether B on proteome and phosphoproteome expression in biofouling Balanus amphitrite cyprids. <i>Biofouling</i> , 2012 , 28, 405-15	3.3	11	
185	Erythrobacter pelagi sp. nov., a member of the family Erythrobacteraceae isolated from the Red Sea. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2012 , 62, 1348-1353	2.2	19	

184	Two antimycin A analogues from marine-derived actinomycete Streptomyces lusitanus. <i>Marine Drugs</i> , 2012 , 10, 668-76	6	28
183	Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. <i>Marine Drugs</i> , 2012 , 10, 234-41	6	94
182	Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. <i>PLoS ONE</i> , 2012 , 7, e33323	3.7	19
181	Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement. <i>PLoS ONE</i> , 2012 , 7, e46513	3.7	41
180	Marinobacter xestospongiae sp. nov., isolated from the marine sponge Xestospongia testudinaria collected from the Red Sea. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2012 , 62, 1980-1985	2.2	22
179	Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. <i>Journal of Natural Products</i> , 2011 , 74, 629-33	4.9	145
178	Quantitative proteomics identify molecular targets that are crucial in larval settlement and metamorphosis of Bugula neritina. <i>Journal of Proteome Research</i> , 2011 , 10, 349-60	5.6	20
177	Chemical Constituents of the Gorgonian Dichotella fragilis (Ridleg) from the South China Sea. <i>Natural Product Communications</i> , 2011 , 6, 1934578X1100600	0.9	
176	Alkaloids and sesquiterpenes from the South China Sea gorgonian Echinogorgia pseudossapo. <i>Marine Drugs</i> , 2011 , 9, 2479-87	6	16
175	Toward an understanding of the molecular mechanisms of barnacle larval settlement: a comparative transcriptomic approach. <i>PLoS ONE</i> , 2011 , 6, e22913	3.7	61
174	Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. <i>ISME Journal</i> , 2011 , 5, 507-18	11.9	133
173	Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. <i>ISME Journal</i> , 2011 , 5, 650-64	11.9	213
172	Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. <i>ISME Journal</i> , 2011 , 5, 1652-9	11.9	30
171	Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. <i>Marine Pollution Bulletin</i> , 2011 , 62, 1140-6	6.7	58
170	Chemical constituents of soft coral Sarcophyton infundibuliforme from the South China Sea. <i>Biochemical Systematics and Ecology</i> , 2011 , 39, 853-856	1.4	19
169	Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 1137-45	5.7	72
168	Sinulariols AB, 19-oxygenated cembranoids from the Chinese soft coral Sinularia rigida. <i>Tetrahedron</i> , 2011 , 67, 6018-6029	2.4	31
167	Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I. <i>Proteome Science</i> , 2011 , 9, 51	2.6	14

(2010-2011)

166	Phosphoproteome analysis during larval development and metamorphosis in the spionid polychaete Pseudopolydora vexillosa. <i>BMC Developmental Biology</i> , 2011 , 11, 31	3.1	19
165	Poly-ethers from Winogradskyella poriferorum: Antifouling potential, time-course study of production and natural abundance. <i>Bioresource Technology</i> , 2011 , 102, 7532-7	11	22
164	Correlation between pigmentation and larval settlement deterrence by Pseudoalteromonas sp. sf57. <i>Biofouling</i> , 2011 , 27, 287-93	3.3	25
163	Aspergilones A and B, two benzylazaphilones with an unprecedented carbon skeleton from the gorgonian-derived fungus Aspergillus sp. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2011 , 21, 690-3	2.9	55
162	The effect of butenolide on behavioral and morphological changes in two marine fouling species, the barnacle Balanus amphitrite and the bryozoan Bugula neritina. <i>Biofouling</i> , 2011 , 27, 467-75	3.3	14
161	Acute toxicity of the antifouling compound butenolide in non-target organisms. <i>PLoS ONE</i> , 2011 , 6, e23	803	24
160	Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments. <i>PLoS ONE</i> , 2011 , 6, e29149	3.7	10
159	Chemical constituents of the Gorgonian Dichotella fragilis (Ridleg) from the South China Sea. <i>Natural Product Communications</i> , 2011 , 6, 1239-42	0.9	11
158	Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. <i>ISME Journal</i> , 2010 , 4, 817-28	11.9	79
157	2D gel-based multiplexed proteomic analysis during larval development and metamorphosis of the biofouling polychaete tubeworm Hydroides elegans. <i>Journal of Proteome Research</i> , 2010 , 9, 4851-60	5.6	26
156	Copper affects biofilm inductiveness to larval settlement of the serpulid polychaete Hydroides elegans (Haswell). <i>Biofouling</i> , 2010 , 26, 119-28	3.3	19
155	Comparative proteome and phosphoproteome analyses during cyprid development of the barnacle Balanus (=Amphibalanus) amphitrite. <i>Journal of Proteome Research</i> , 2010 , 9, 3146-57	5.6	39
154	Host-specific 16S rRNA gene markers of Bacteroidales for source tracking of fecal pollution in the subtropical coastal seawater of Hong Kong. <i>Water Research</i> , 2010 , 44, 6164-74	12.5	7
153	Natural products as antifouling compounds: recent progress and future perspectives. <i>Biofouling</i> , 2010 , 26, 223-34	3.3	316
152	Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. <i>Ecotoxicology</i> , 2010 , 19, 96-104	2.9	71
151	Response of cyprid specific genes to natural settlement cues in the barnacle Balanus (= Amphibalanus) amphitrite. <i>Journal of Experimental Marine Biology and Ecology</i> , 2010 , 389, 45-52	2.1	11
150	Dependency on de novo protein synthesis and proteomic changes during metamorphosis of the marine bryozoan Bugula neritina. <i>Proteome Science</i> , 2010 , 8, 25	2.6	15
149	New Steroids and a New Alkaloid from the Gorgonian Isis minorbrachyblasta: Structures, Cytotoxicity, and Antilarval Activity. <i>Helvetica Chimica Acta</i> , 2010 , 93, 511-516	2	22

148	Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell). <i>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution</i> , 2010 , 314, 390-402	1.8	19
147	Potent antifouling compounds produced by marine Streptomyces. <i>Bioresource Technology</i> , 2010 , 101, 1331-6	11	111
146	Protein expression during the embryonic development of a gastropod. <i>Proteomics</i> , 2010 , 10, 2701-11	4.8	26
145	Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina. <i>Proteomics</i> , 2010 , 10, 2972-81	4.8	44
144	Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach. <i>Proteomics</i> , 2010 , 10, 2780-9	4.8	33
143	Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina larvae in response to the antifouling agent butenolide. <i>Proteomics</i> , 2010 , 10, 3435-46	4.8	28
142	Chemical constituents of the soft coral Sarcophyton infundibuliforme from the South China Sea. <i>Natural Product Communications</i> , 2010 , 5, 1171-4	0.9	7
141	Reversible anti-settlement activity against Amphibalanus (=Balanus) amphitrite, Bugula neritina, and Hydroides elegans by a nontoxic pharmaceutical compound, mizolastine. <i>Biofouling</i> , 2009 , 25, 739-4	1 3 ·3	12
140	Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 6147-56	4.8	68
139	Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. <i>PLoS ONE</i> , 2009 , 4, e7401	3.7	709
138	Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete Hydroides elegans. <i>Marine Biotechnology</i> , 2009 , 11, 495-504	3.4	44
137	Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2009 , 36, 1047	- \$ 6 ²	46
136	Antibacterial and antilarval compounds from marine bacteriumPseudomonas rhizosphaerae. <i>Annals of Microbiology</i> , 2009 , 59, 229-233	3.2	30
135	Identification of a C-type lectin from the bay scallop Argopecten irradians. <i>Molecular Biology Reports</i> , 2009 , 36, 1167-73	2.8	22
134	Diversity and functional responses of nitrogen-fixing microbes to three wetland invasions. <i>Biological Invasions</i> , 2009 , 11, 225-239	2.7	25
133	Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. <i>World Journal of Microbiology and Biotechnology</i> , 2009 , 25, 399-406	4.4	65
132	Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the discriminative power of marine Vibrio species. <i>Microbial Ecology</i> , 2009 , 58, 679-91	4.4	18
131	Evidence for the dynamics of Acyl homoserine lactone and AHL-producing bacteria during subtidal biofilm formation. <i>ISME Journal</i> , 2009 , 3, 296-304	11.9	31

(2008-2009)

130	Response of bacterioplankton community structures to hydrological conditions and anthropogenic pollution in contrasting subtropical environments. <i>FEMS Microbiology Ecology</i> , 2009 , 69, 449-60	4.3	22	
129	Morphological Plasticity and Resource Allocation in Response to Food Limitation and Hyposalinity in a Sea Urchin. <i>Journal of Shellfish Research</i> , 2009 , 28, 383-388	1	20	
128	Flavone and isoflavone derivatives of terrestrial plants as larval settlement inhibitors of the barnacle Balanus amphitrite. <i>Biofouling</i> , 2009 , 25, 69-76	3.3	33	
127	Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. <i>Journal of Hydro-Environment Research</i> , 2009 , 2, 264-270	2.3	29	
126	Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. <i>Journal of Microbiological Methods</i> , 2009 , 77, 48-57	2.8	85	
125	Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong. <i>Canadian Journal of Microbiology</i> , 2009 , 55, 311-8	3.2	17	
124	Proteomic analysis during larval development and metamorphosis of the spionid polychaete Pseudopolydora vexillosa. <i>Proteome Science</i> , 2009 , 7, 44	2.6	22	
123	2D gel-based proteome and phosphoproteome analysis during larval metamorphosis in two major marine biofouling invertebrates. <i>Journal of Proteome Research</i> , 2009 , 8, 2708-19	5.6	49	
122	Inter- and intraspecific variations of bacterial communities associated with marine sponges from san juan island, washington. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 3513-21	4.8	53	
121	Microbial diversity in polluted harbor sediments II: Sulfate-reducing bacterial community assessment using terminal restriction fragment length polymorphism and clone library of dsrAB gene. Estuarine, Coastal and Shelf Science, 2008, 76, 682-691	2.9	34	
120	Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA. <i>Estuarine, Coastal and Shelf Science</i> , 2008 , 76, 668-681	2.9	75	
119	The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong. <i>Marine Pollution Bulletin</i> , 2008 , 57, 816-25	6.7	55	
118	Larval development and metamorphic behaviour of the subtropical spionid polychaete Pseudopolydora vexillosa. <i>Journal of Experimental Marine Biology and Ecology</i> , 2008 , 357, 99-108	2.1	9	
117	Preferential attachment of barnacle larvae to natural multi-species biofilms: Does surface wettability matter?. <i>Journal of Experimental Marine Biology and Ecology</i> , 2008 , 361, 36-41	2.1	35	
116	Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracillis. <i>Natural Product Research</i> , 2008 , 22, 154-66	2.3	67	
115	Molecular cloning and immune responsive expression of a novel C-type lectin gene from bay scallop Argopecten irradians. <i>Fish and Shellfish Immunology</i> , 2008 , 25, 231-8	4.3	27	
114	Is inorganic nutrient enrichment a driving force for the formation of red tides?: A case study of the dinoflagellate Scrippsiella trochoidea in an embayment. <i>Harmful Algae</i> , 2008 , 8, 54-59	5.3	19	
113	Antifeedant, antibacterial, and antilarval compounds from the South China Sea seagrass Enhalus acoroides. <i>Botanica Marina</i> , 2008 , 51,	1.8	47	

112	An improved barnacle attachment inhibition assay. <i>Biofouling</i> , 2008 , 24, 259-66	3.3	16
111	Differential timing of larval starvation effects on filtration rate and growth in juvenile Crepidula onyx. <i>Marine Biology</i> , 2008 , 154, 91-98	2.5	14
110	Proteomic analysis of larvae during development, attachment, and metamorphosis in the fouling barnacle, Balanus amphitrite. <i>Proteomics</i> , 2008 , 8, 3164-72	4.8	54
109	Cyclic AMP concentration and protein kinase A (PKA) gene expression at different developmental stages of the polychaete Hydroides elegans. <i>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution</i> , 2008 , 310, 417-27	1.8	12
108	Influences of metal-ligand complexes on the cadmium and zinc biokinetics in the marine bacterium, Bacillus firmus. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 131-7	3.8	22
107	Biokinetics of cadmium and zinc in a marine bacterium: influences of metal interaction and pre-exposure. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1794-801	3.8	21
106	Evaluation of terminal-restriction fragment length polymorphism analysis in contrasting marine environments. <i>FEMS Microbiology Ecology</i> , 2008 , 65, 169-78	4.3	59
105	Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters. <i>Environmental Microbiology</i> , 2007 , 9, 3008-18	5.2	64
104	The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. <i>FEMS Microbiology Ecology</i> , 2007 , 60, 177-88	4.3	64
103	Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. <i>FEMS Microbiology Ecology</i> , 2007 , 61, 496-508	4.3	87
102	Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. <i>Journal of Experimental Marine Biology and Ecology</i> , 2007 , 341, 228-238	2.1	22
101	Potential roles of succinic acid against colonization by a tubeworm. <i>Journal of Experimental Marine Biology and Ecology</i> , 2007 , 349, 1-11	2.1	11
100	Influence of bacteria and diatoms in biofilms on metamorphosis of the marine slipper limpet Crepidula onyx. <i>Marine Biology</i> , 2007 , 151, 1417-1431	2.5	32
99	Presence of acyl-homoserine lactone in subtidal biofilm and the implication in larval behavioral response in the polychaete Hydroides elegans. <i>Microbial Ecology</i> , 2007 , 54, 384-92	4.4	51
98	Effect of culture conditions on antifouling compound production of a sponge-associated fungus. <i>Applied Microbiology and Biotechnology</i> , 2007 , 74, 1221-31	5.7	29
97	Novel antifoulants: inhibition of larval attachment by proteases. <i>Marine Biotechnology</i> , 2007 , 9, 388-97	3.4	80
96	Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. <i>Marine Biotechnology</i> , 2007 , 9, 399-410	3.4	293
95	Effects of salinity on spawning and early development of the tube-building polychaete Hydroides elegans in Hong Kong: not just the sperm's fault?. <i>Biological Bulletin</i> , 2007 , 212, 151-60	1.5	21

(2006-2007)

94	Thalassococcus halodurans gen. nov., sp. nov., a novel halotolerant member of the Roseobacter clade isolated from the marine sponge Halichondria panicea at Friday Harbor, USA. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2007 , 57, 1919-1924	2.2	15
93	Effect of biofilm formation by Pseudoalteromonas spongiae on induction of larval settlement of the polychaete Hydroides elegans. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 6284-8	4.8	33
92	Fangia hongkongensis gen. nov., sp. nov., a novel gammaproteobacterium of the order Thiotrichales isolated from coastal seawater of Hong Kong. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2007 , 57, 2665-2669	2.2	21
91	Antibacterial and antilarval activity of deep-sea bacteria from sediments of the West Pacific Ocean. <i>Biofouling</i> , 2007 , 23, 131-7	3.3	18
90	Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2007 , 34, 63-71	4.2	28
89	Cypris habitat selection facilitated by microbial films influences the vertical distribution of subtidal barnacle Balanus trigonus. <i>Microbial Ecology</i> , 2006 , 51, 431-40	4.4	27
88	Consistent bacterial community structure associated with the surface of the sponge Mycale adhaerens bowerbank. <i>Microbial Ecology</i> , 2006 , 52, 693-707	4.4	15
87	Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. <i>Applied Microbiology and Biotechnology</i> , 2006 , 72, 1063-73	5.7	84
86	Resting stages of Tortanus forcipatus (Crustacea, Calanoida) in sediments of Victoria Harbor, Hong Kong. <i>Estuarine, Coastal and Shelf Science</i> , 2006 , 67, 562-568	2.9	21
85	Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms. <i>Journal of Experimental Marine Biology and Ecology</i> , 2006 , 333, 263-274	2.1	68
84	Determination of paralytic shellfish toxins in dinoflagellate Alexandrium tamarense by using isotachophoresis/capillary electrophoresis. <i>Journal of Separation Science</i> , 2006 , 29, 399-404	3.4	19
83	Gillisia myxillae sp. nov., a novel member of the family Flavobacteriaceae, isolated from the marine sponge Myxilla incrustans. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 1795-1799	2.2	19
82	Marinomonas ostreistagni sp. nov., isolated from a pearl-oyster culture pond in Sanya, Hainan Province, China. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2271-2275	2.2	24
81	Description of Fabibacter halotolerans gen. nov., sp. nov. and Roseivirga spongicola sp. nov., and reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 1059-1065	2.2	39
80	Shewanella irciniae sp. nov., a novel member of the family Shewanellaceae, isolated from the marine sponge Ircinia dendroides in the Bay of Villefranche, Mediterranean Sea. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2871-2877	2.2	27
79	Stenothermobacter spongiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine sponge in the Bahamas, and emended description of Nonlabens tegetincola. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 181-5	2.2	26
78	Lishizhenia caseinilytica gen. nov., sp. nov., a marine bacterium of the phylum Bacteroidetes. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2317-2322	2.2	22
77	Morphology and tenacity of the tube foot disc of three common European sea urchin species: a comparative study. <i>Biofouling</i> , 2006 , 22, 187-200	3.3	93

76	Inhibition of biofouling by marine microorganisms and their metabolites. <i>Biofouling</i> , 2006 , 22, 43-54	3.3	296
75	Antifouling properties of 10beta-formamidokalihinol-A and kalihinol A isolated from the marine sponge Acanthella cavernosa. <i>Biofouling</i> , 2006 , 22, 23-32	3.3	24
74	Ten new antifouling briarane diterpenoids from the South China Sea gorgonian Junceella juncea. <i>Tetrahedron</i> , 2006 , 62, 9123-9130	2.4	73
73	Antibiotic resistance and plasmid profile of environmental isolates of Vibrio species from Mai Po Nature Reserve, Hong Kong. <i>Ecotoxicology</i> , 2006 , 15, 371-8	2.9	36
72	Novel antifouling and antimicrobial compound from a marine-derived fungus Ampelomyces sp. <i>Marine Biotechnology</i> , 2006 , 8, 634-40	3.4	54
71	Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. <i>Biofouling</i> , 2006 , 22, 201-8	3.3	21
7º	Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2005 , 55, 2497-2500	o ^{2.2}	29
69	Toxic effects of copper on larval development of the barnacle Balanus amphitrite. <i>Marine Pollution Bulletin</i> , 2005 , 51, 688-93	6.7	27
68	Do effects of ultraviolet radiation on microbial films have indirect effects on larval attachment of the barnacle Balanus amphitrite?. <i>Journal of Experimental Marine Biology and Ecology</i> , 2005 , 323, 16-26	2.1	19
67	The role of sediment organic matter composition in larval habitat selection by the polychaete Capitella sp. I. <i>Journal of Experimental Marine Biology and Ecology</i> , 2005 , 323, 70-83	2.1	17
66	Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2005 , 55, 1589-1592	2.2	58
65	Nonlabens tegetincola gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a microbial mat in a subtropical estuary. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2005 , 55, 2279-2283	2.2	18
64	Pseudoalteromonas spongiae sp. nov., a novel member of the gamma-Proteobacteria isolated from the sponge Mycale adhaerens in Hong Kong waters. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2005 , 55, 1593-1596	2.2	19
63	Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum 'Bacteroidetes'. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2005 , 55, 1051-1057	2.2	67
62	Life histories of the Harpacticoida (Copepoda, Crustacea): a comparison with meiofauna and macrofauna. <i>Journal of Natural History</i> , 2004 , 38, 1725-1734	0.5	26
61	The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. in the inhibition of larval settlement. <i>Journal of Experimental Marine Biology and Ecology</i> , 2004 , 299, 35-50	2.1	80
60	Drift-pump and drift-netEwo devices for the collection of bottom-near drifting biota. <i>Journal of Experimental Marine Biology and Ecology</i> , 2004 , 301, 29-37	2.1	10
59	Effect of meiofauna on macrofauna recruitment: settlement inhibition of the polychaete Hydroides elegans by the harpacticoid copepod Tisbe japonica. <i>Journal of Experimental Marine Biology and Ecology</i> , 2004 , 311, 47-61	2.1	19

58	The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina. <i>Journal of Experimental Marine Biology and Ecology</i> , 2004 , 313, 191-209	2.1	111
57	Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. <i>Marine Pollution Bulletin</i> , 2004 , 49, 588-96	6.7	116
56	A bacterial culture-independent method to investigate chemically mediated control of bacterial epibiosis in marine invertebrates by using TRFLP analysis and natural bacterial populations. <i>FEMS Microbiology Ecology</i> , 2004 , 47, 93-9	4.3	19
55	Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modelling degradation. <i>International Biodeterioration and Biodegradation</i> , 2004 , 53, 57-63	4.8	76
54	Antibiotic treatment enhances C2 toxin production by Alexandrium tamarense in batch cultures. <i>Harmful Algae</i> , 2004 , 3, 21-28	5.3	7
53	Loktanella hongkongensis sp. nov., a novel member of the alpha-Proteobacteria originating from marine biofilms in Hong Kong waters. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2004 , 54, 2281-2284	2.2	50
52	Adrenoceptor compounds prevent the settlement of marine invertebrate larvae: Balanus amphitrite (Cirripedia), Bugula neritina (Bryozoa) and Hydroides elegans (Polychaeta). <i>Biofouling</i> , 2004 , 20, 313-21	3.3	28
51	Effect of wind events on phytoplankton blooms in the Pearl River estuary during summer. <i>Continental Shelf Research</i> , 2004 , 24, 1909-1923	2.4	87
50	Assessment of microbial dynamics in the Pearl River Estuary by 16S rRNA terminal restriction fragment analysis. <i>Continental Shelf Research</i> , 2004 , 24, 1925-1934	2.4	16
49	Effects of UV, H2O2 and Fe3+ on the Growth of Four Environmental Isolates of Aeromonas and Vibrio Species from a Mangrove Environment. <i>Microbes and Environments</i> , 2004 , 19, 163-171	2.6	16
48	Effects of TAG/DNA ratio and age of cyprids on post-metamorphic growth and survival in the barnacle Balanus amphitrite. <i>Journal of the Marine Biological Association of the United Kingdom</i> , 2003 , 83, 83-88	1.1	10
47	Energy content at metamorphosis and growth rate of the early juvenile barnacle Balanus amphitrite. <i>Marine Biology</i> , 2003 , 143, 543-554	2.5	110
46	Recolonization of benthic infauna subsequent to capping of contaminated dredged material in East Sha Chau, Hong Kong. <i>Estuarine, Coastal and Shelf Science</i> , 2003 , 56, 819-831	2.9	8
45	The bioactivity of bacterial isolates in Hong Kong waters for the inhibition of barnacle (Balanus amphitrite Darwin) settlement. <i>Journal of Experimental Marine Biology and Ecology</i> , 2003 , 282, 43-60	2.1	53
44	Combined effects of temperature and salinity on larval development and attachment of the subtidal barnacle Balanus trigonus Darwin. <i>Journal of Experimental Marine Biology and Ecology</i> , 2003 , 287, 223-236	2.1	75
43	Effect of temperature, salinity and delayed attachment on development of the solitary ascidian Styela plicata (Lesueur). <i>Journal of Experimental Marine Biology and Ecology</i> , 2003 , 290, 133-146	2.1	61
42	Effects of food availability on larval development in the slipper limpet Crepidula onyx (Sowerby). <i>Journal of Experimental Marine Biology and Ecology</i> , 2003 , 294, 219-233	2.1	18
41	A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. <i>FEMS Microbiology Ecology</i> , 2003 , 43, 337-47	4.3	87

40	Development of a marine subtidal epibiotic community in Hong Kong: implications for deployment of artificial reefs. <i>Biofouling</i> , 2003 , 19, 37-46	3.3	23
39	Larval settlement of the silver- or goldlip pearl oyster Pinctada maxima (Jameson) in response to natural biofilms and chemical cues. <i>Aquaculture</i> , 2003 , 220, 883-901	4.4	75
38	The effect of co-cultivation on the pearl yield of Pinctada martensi (Dumker). <i>Aquaculture</i> , 2003 , 221, 347-356	4.4	10
37	Pharmacological induction of larval settlement and metamorphosis in the blue mussel Mytilus edulis L. <i>Biofouling</i> , 2003 , 19, 57-63	3.3	55
36	Chemical control of bacterial epibiosis and larval settlement of Hydroides elegans in the red sponge Mycale adherens. <i>Biofouling</i> , 2003 , 19 Suppl, 171-80	3.3	39
35	Induction of larval settlement in the serpulid polychaete Hydroides elegans (Haswell): role of bacterial extracellular polymers. <i>Biofouling</i> , 2003 , 19, 197-204	3.3	159
34	Induction of Larval Settlement in the Serpulid Polychaete Hydroides elegans (Haswell): Role of Bacterial Extracellular Polymers. <i>Biofouling</i> , 2003 , 19, 197-204	3.3	9
33	Larval settlement and metamorphosis in the slipper limpet Crepidula onyx (Sowerby) in response to conspecific cues and the cues from biofilm. <i>Journal of Experimental Marine Biology and Ecology</i> , 2002 , 269, 39-51	2.1	41
32	Effect of the physiological condition of cyprids and laboratory-mimicked seasonal conditions on the metamorphic successes of Balanus amphitrite Darwin (Cirripedia; Thoracica). <i>Journal of Experimental Marine Biology and Ecology</i> , 2002 , 274, 65-74	2.1	36
31	Relationship between cyprid energy reserves and metamorphosis in the barnacle Balanus amphitrite Darwin (Cirripedia; Thoracica). <i>Journal of Experimental Marine Biology and Ecology</i> , 2002 , 280, 79-93	2.1	44
30	Isolation of bacterial metabolites as natural inducers for larval settlement in the marine polychaete Hydroides elegans (Haswell). <i>Journal of Chemical Ecology</i> , 2002 , 28, 2029-43	2.7	46
29	Effect of Bacteria Associated with the Green Alga Ulva reticulata on Marine Micro- and Macrofouling. <i>Biofouling</i> , 2002 , 18, 217-228	3.3	121
28	Molecular phylogeny and species identification of pufferfish of the genus Takifugu (Tetraodontiformes, Tetraodontidae). <i>Marine Biotechnology</i> , 2001 , 3, 398-406	3.4	24
27	Phylogenetic relationships among pufferfish of genusTakifugu by RAPD analysis. <i>Chinese Journal of Oceanology and Limnology</i> , 2001 , 19, 128-134		6
26	Effects of the duration and timing of starvation during larval life on the metamorphosis and initial juvenile size of the polychaete Hydroides elegans (Haswell). <i>Journal of Experimental Marine Biology and Ecology</i> , 2001 , 261, 185-197	2.1	27
25	Comparison of nutrients release among some maricultured animals. <i>Aquaculture</i> , 2001 , 200, 305-316	4.4	33
24	Larval settlement of polychaetes. <i>Hydrobiologia</i> , 1999 , 402, 239-253	2.4	111
23	Tower cells of the marine bryozoan Membranipora membranacea. <i>Journal of Morphology</i> , 1999 , 239, 121-130	1.6	5

22	Significance of Trophic Transfer in Predicting the High Concentration of Zinc in Barnacles. <i>Environmental Science & Environmental Science & Environme</i>	10.3	37	
21	Analysing energy content: a new micro-assay and an assessment of the applicability of acid dichromate assays. <i>Hydrobiologia</i> , 1998 , 390, 141-151	2.4	11	
20	Settlement of the serpulid polychaete Hydroides elegans (Haswell) on the arborescent bryozoan Bugula neritina (L.): evidence of a chemically mediated relationship. <i>Journal of Experimental Marine Biology and Ecology</i> , 1998 , 220, 171-190	2.1	39	
19	Induction of larval attachment and metamorphosis in the abalone Haliotis diversicolor (Reeve). <i>Journal of Experimental Marine Biology and Ecology</i> , 1998 , 223, 39-51	2.1	63	
18	Onset and maintenance of metamorphic competence in the marine polychaete Hydroides elegans Haswell in response to three chemical cues. <i>Journal of Experimental Marine Biology and Ecology</i> , 1998 , 226, 51-74	2.1	54	
17	Effects of larval starvation and delayed metamorphosis on juvenile survival and growth of the tube-dwelling polychaete Hydroides elegans (Haswell). <i>Journal of Experimental Marine Biology and Ecology</i> , 1998 , 227, 169-185	2.1	68	
16	Integrated cultivation of the red alga Kappaphycus alvarezii and the pearl oyster Pinctada martensi. <i>Aquaculture</i> , 1996 , 147, 21-35	4.4	70	
15	Effect of food quantity on growth and reproductive characteristics of Capitella sp. (Annelids: Polychaeta). <i>Invertebrate Reproduction and Development</i> , 1994 , 26, 175-185	0.7	28	
14	Larval development as influenced by food limitation in two polychaetes: Capitella sp. and Polydora ligni Webster. <i>Journal of Experimental Marine Biology and Ecology</i> , 1993 , 166, 93-105	2.1	23	
13	Effect of starvation on energy reserves and metabolism in the Northern abalone, Haliotis kamtschatkana. <i>Aquaculture</i> , 1993 , 118, 315-325	4.4	48	
12	The thorphological femalestof a marine polychaete, Capitella sp. are functional hermaphrodites. <i>Invertebrate Reproduction and Development</i> , 1992 , 21, 107-112	0.7	1	
11	Effect of aging on reproduction in a marine polychaete Capitella sp <i>Journal of Experimental Marine Biology and Ecology</i> , 1992 , 156, 23-38	2.1	20	
10	Effects of diet type on the demographics of Capitella sp. (Annelida: Polychaeta): lecithotrophic development vs. planktotrophic development. <i>Journal of Experimental Marine Biology and Ecology</i> , 1992 , 157, 159-179	2.1	37	
9	Fecundity and egg size are mediated by food quality in the polychaete worm Capitella sp <i>Journal of Experimental Marine Biology and Ecology</i> , 1991 , 148, 11-25	2.1	56	
8	Effects of delayed settlement on survival, growth, and reproduction in the spionid polychaete, Polydora ligni. <i>Invertebrate Reproduction and Development</i> , 1990 , 18, 147-152	0.7	30	
7	Detritus as a potential food source for polychaete larvae. <i>Journal of Experimental Marine Biology and Ecology</i> , 1990 , 143, 63-71	2.1	6	
6	Recruitment of barnacles into empty adult tests. <i>Journal of Experimental Marine Biology and Ecology</i> , 1990 , 142, 63-74	2.1	10	
5	Larval development of Autolytus alexandri Malmgren 1867 (Polychaeta, Syllidae). <i>Invertebrate</i> Reproduction and Development, 1989 , 15, 49-56	0.7	6	

Tripartite holobiont system in a vent snail broadens the concept of chemosymbiosis

Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage

Mode of action of Elasnin as biofilm-formation eradicator of Methicillin-Resistant Staphylococcus aureus

Marine biofilms: diversity, interactions and biofouling. Nature Reviews Microbiology,

22.2 1