
Yoong Ahm Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9132090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bulk Production of a New Form of sp ² Carbon: Crystalline Graphene Nanoribbons. Nano Letters, 2008, 8, 2773-2778.	9.1	588
2	Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012, 2, 586.	3.3	563
3	Controlled Synthesis and Transfer of Large-Area WS ₂ Sheets: From Single Layer to Few Layers. ACS Nano, 2013, 7, 5235-5242.	14.6	534
4	Synthesis and Characterization of Porous Carbon Nanofibers with Hollow Cores Through the Thermal Treatment of Electrospun Copolymeric Nanofiber Webs. Small, 2007, 3, 91-95.	10.0	336
5	Carbon Nanotubes with High Boneâ€Tissue Compatibility and Boneâ€Formation Acceleration Effects. Small, 2008, 4, 240-246.	10.0	254
6	Raman Spectroscopy of Boron-Doped Single-Layer Graphene. ACS Nano, 2012, 6, 6293-6300.	14.6	245
7	Applications of carbon nanotubes in the twenty–first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2223-2238.	3.4	212
8	Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers. Nano Letters, 2003, 3, 723-726.	9.1	208
9	Rice Huskâ€Derived Graphene with Nanoâ€ S ized Domains and Clean Edges. Small, 2014, 10, 2766-2770.	10.0	181
10	Fabrication of aligned carbon nanotube-filled rubber composite. Scripta Materialia, 2006, 54, 31-35.	5.2	154
11	Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chemical Society Reviews, 2011, 40, 3824.	38.1	146
12	Observation of magnetic edge state in graphene nanoribbons. Physical Review B, 2010, 81, .	3.2	132
13	Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes. Carbon, 2010, 48, 1598-1603.	10.3	123
14	Elucidation of the Reinforcing Mechanism in Carbon Nanotube/Rubber Nanocomposites. ACS Nano, 2011, 5, 3858-3866.	14.6	117
15	Extremeâ€Performance Rubber Nanocomposites for Probing and Excavating Deep Oil Resources Using Multiâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2008, 18, 3403-3409.	14.9	112
16	The Reinforcing Effect of Combined Carbon Nanotubes and Acetylene Blacks on the Positive Electrode of Lithiumâ€ion Batteries. ChemSusChem, 2008, 1, 911-915.	6.8	107
17	Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes. Carbon, 2019, 149, 637-645.	10.3	102
18	Smallest Freestanding Single-Walled Carbon Nanotube. Nano Letters, 2003, 3, 887-889.	9.1	101

#	Article	IF	CITATIONS
19	Development and Application of Carbon Nanotubes. Japanese Journal of Applied Physics, 2006, 45, 4883-4892.	1.5	94
20	Dry Synthesis of Easily Tunable Nano Ruthenium Supported on Graphene: Novel Nanocatalysts for Aerial Oxidation of Alcohols and Transfer Hydrogenation of Ketones. Journal of Physical Chemistry C, 2013, 117, 23582-23596.	3.1	93
21	Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 9532-9540.	10.3	91
22	An efficient, reusable copper-oxide/carbon-nanotube catalyst for N-arylation of imidazole. Carbon, 2013, 62, 135-148.	10.3	90
23	Large Area Films of Alternating Graphene–Carbon Nanotube Layers Processed in Water. ACS Nano, 2013, 7, 10788-10798.	14.6	85
24	Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 2015, 51, 13086-13089.	4.1	84
25	Optically Active Multi-Walled Carbon Nanotubes for Transparent, Conductive Memory-Shape Polyurethane Film. Macromolecules, 2010, 43, 6106-6112.	4.8	81
26	Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance. Journal of Materials Chemistry A, 2015, 3, 21805-21814.	10.3	81
27	Formation of Nitrogen-Doped Graphene Nanoribbons <i>via</i> Chemical Unzipping. ACS Nano, 2013, 7, 2192-2204.	14.6	80
28	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	10.3	80
29	Nanotube Coalescence-Inducing Mode: A Novel Vibrational Mode in Carbon Systems. Small, 2006, 2, 1031-1036.	10.0	77
30	The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites. Journal of Colloid and Interface Science, 2014, 432, 128-134.	9.4	75
31	In Situ Raman Study on Single- and Double-Walled Carbon Nanotubes as a Function of Lithium Insertion. Small, 2006, 2, 667-676.	10.0	73
32	Solvent-induced porosity control of carbon nanofiber webs for supercapacitor. Journal of Power Sources, 2011, 196, 10496-10501.	7.8	72
33	Fabrication of Transparent, Tough, and Conductive Shapeâ€Memory Polyurethane Films by Incorporating a Small Amount of Highâ€Quality Graphene. Macromolecular Rapid Communications, 2012, 33, 628-634.	3.9	69
34	Compressive strength sensitivity of cement mortar using rice husk-derived graphene with a high specific surface area. Construction and Building Materials, 2015, 96, 189-197.	7.2	67
35	Proteomics-based safety evaluation of multi-walled carbon nanotubes. Toxicology and Applied Pharmacology, 2010, 242, 256-262.	2.8	65
36	Selective Optical Property Modification of Double-Walled Carbon Nanotubes by Fluorination. ACS Nano, 2008, 2, 485-488.	14.6	64

#	Article	IF	CITATIONS
37	Carbon Nanotubes Induce Bone Calcification by Bidirectional Interaction with Osteoblasts. Advanced Materials, 2012, 24, 2176-2185.	21.0	63
38	Edge‣nriched, Porous Carbonâ€Based, High Energy Density Supercapacitors for Hybrid Electric Vehicles. ChemSusChem, 2012, 5, 535-541.	6.8	63
39	Synthesis and Isolation of Molybdenum Atomic Wires. Nano Letters, 2008, 8, 237-240.	9.1	61
40	Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment. Nanoscale, 2011, 3, 4359.	5.6	60
41	Robust, Conducting, and Transparent Polymer Composites Using Surfaceâ€Modified and Individualized Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2008, 20, 4509-4512.	21.0	58
42	Carbon Nanomaterials as Versatile Platforms for Biosensing Applications. Micromachines, 2020, 11, 814.	2.9	58
43	Tailoring the pore structure of carbon nanofibers for achieving ultrahigh-energy-density supercapacitors using ionic liquids as electrolytes. Journal of Materials Chemistry A, 2016, 4, 4763-4770.	10.3	56
44	Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges. ACS Nano, 2012, 6, 2261-2272.	14.6	54
45	Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO2 composites for supercapacitor applications. Carbon, 2020, 164, 296-304.	10.3	54
46	Electrically conductive cement mortar: Incorporating rice husk-derived high-surface-area graphene. Construction and Building Materials, 2016, 125, 632-642.	7.2	52
47	Efficient H ₂ Adsorption by Nanopores of High-Purity Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 12636-12637.	13.7	50
48	Surface Chemistry in the Process of Coating Mesoporous SiO ₂ onto Carbon Nanotubes Driven by the Formation of SiOC Bonds. Chemistry - A European Journal, 2011, 17, 3228-3237.	3.3	50
49	Mechanically Robust, Electrically Conductive Biocomposite Films Using Antimicrobial Chitosanâ€Functionalized Graphenes. Particle and Particle Systems Characterization, 2013, 30, 721-727.	2.3	46
50	Sulfur-doped carbon nanotubes as a conducting agent in supercapacitor electrodes. Journal of Alloys and Compounds, 2021, 855, 157282.	5.5	46
51	Mechanical Properties of Carbon Nanomaterials. ChemPhysChem, 2007, 8, 999-1004.	2.1	45
52	Medical Application of Carbon-Nanotube-Filled Nanocomposites: The Microcatheter. Small, 2006, 2, 1406-1411.	10.0	44
53	A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications. Applied Sciences (Switzerland), 2016, 6, 109.	2.5	44
54	Capacitive properties of hierarchically structured carbon nanofiber/graphene/MnO2 hybrid electrode with nitrogen and oxygen heteroatoms. Carbon, 2016, 107, 783-791.	10.3	44

#	Article	IF	CITATIONS
55	Selective Tuning of the Electronic Properties of Coaxial Nanocables through Exohedral Doping. Nano Letters, 2007, 7, 2383-2388.	9.1	43
56	Simple Synthesis of Multiwalled Carbon Nanotubes from Natural Resources. ChemSusChem, 2008, 1, 820-822.	6.8	43
57	Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment. Nano Letters, 2009, 9, 1487-1492.	9.1	43
58	Superconductivity in Bundles of Double-Wall Carbon Nanotubes. Scientific Reports, 2012, 2, 625.	3.3	43
59	Thermal conductivity enhancement in electrospun poly(vinyl alcohol) and poly(vinyl) Tj ETQq1 1 0.784314 rgBT /C)yerlock 1	0 Tf 50 582 43
60	A Thin Carbonâ€Fiber Web as a Scaffold for Boneâ€Tissue Regeneration. Small, 2009, 5, 1540-1546.	10.0	42
61	Double-Wall Carbon Nanotubes. Topics in Applied Physics, 2007, , 495-530.	0.8	40
62	Catalytic metal-free formation of multi-walled carbon nanotubes in atmospheric arc discharge. Carbon, 2012, 50, 4588-4595.	10.3	40
63	Thermal-Treatment-Induced Enhancement in Effective Surface Area of Single-Walled Carbon Nanohorns for Supercapacitor Application. Journal of Physical Chemistry C, 2013, 117, 25877-25883.	3.1	39
64	Bright Photoluminescence from the Inner Tubes of "Peapodâ€â€Derived Doubleâ€Walled Carbon Nanotubes. Small, 2009, 5, 2678-2682.	10.0	38
65	Chemically Modified Multiwalled Carbon Nanotubes as an Additive for Supercapacitors. Small, 2006, 2, 339-345.	10.0	37
66	Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique. Applied Physics Letters, 2008, 92, .	3.3	37
67	Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes. Nanoscale, 2018, 10, 12723-12733.	5.6	37
68	Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. Carbon, 2019, 153, 495-503.	10.3	36
69	Double-walled carbon nanotubes: synthesis, structural characterization, and application. Carbon Letters, 2014, 15, 77-88.	5.9	35
70	Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. Applied Physics Letters, 2009, 94, 083106.	3.3	34
71	Fabrication of electrospun PVDF nanofiber membrane for Western blot with high sensitivity. Journal of Membrane Science, 2012, 389, 349-354.	8.2	34
72	Exposed Edge Planes of Cup-Stacked Carbon Nanotubes for an Electrochemical Capacitor. Journal of Physical Chemistry Letters, 2010, 1, 2099-2103.	4.6	33

#	Article	IF	CITATIONS
73	Linear carbon chains inside multi-walled carbon nanotubes: Growth mechanism, thermal stability and electrical properties. Carbon, 2016, 107, 217-224.	10.3	33
74	Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance. Applied Surface Science, 2019, 497, 143693.	6.1	33
75	Important roles of graphene edges in carbon-based energy storage devices. Journal of Energy Chemistry, 2013, 22, 183-194.	12.9	32
76	Effect of the Size and Position of Ion-Accessible Nanoholes on the Specific Capacitance of Single-Walled Carbon Nanohorns for Supercapacitor Applications. Journal of Physical Chemistry C, 2015, 119, 2935-2940.	3.1	32
77	Optically and Biologically Active Mussel Protein oated Doubleâ€Walled Carbon Nanotubes. Small, 2011, 7, 3292-3297.	10.0	31
78	Efficient Metal-Free Catalytic Reaction Pathway for Selective Oxidation of Substituted Phenols. ACS Catalysis, 2015, 5, 5921-5926.	11.2	31
79	Characterization of Bundled and Individual Triple-Walled Carbon Nanotubes by Resonant Raman Spectroscopy. ACS Nano, 2013, 7, 2381-2387.	14.6	30
80	Electron Beam Irradiation-Enhanced Wettability of Carbon Fibers. ACS Applied Materials & Interfaces, 2011, 3, 119-123.	8.0	29
81	The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration. Nanomaterials, 2020, 10, 562.	4.1	29
82	Double-Wall Carbon Nanotubes Doped with Different Br2 Doping Levels: A Resonance Raman Study. Nano Letters, 2008, 8, 4168-4172.	9.1	28
83	Chirality-Dependent Transport in Double-Walled Carbon Nanotube Assemblies: The Role of Inner Tubes. ACS Nano, 2011, 5, 7547-7554.	14.6	28
84	Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating. Journal of Vacuum Science & Technology B, 2009, 27, 1996.	1.3	26
85	Freestanding, bendable thin film for supercapacitors using DNA-dispersed double walled carbon nanotubes. Applied Physics Letters, 2009, 95, .	3.3	26
86	Shell–core structured carbon fibers via melt spinning of petroleum- and wood-processing waste blends. Carbon, 2015, 85, 194-200.	10.3	26
87	Solvent Additive-Assisted Anisotropic Assembly and Enhanced Charge Transport of π-Conjugated Polymer Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 18131-18140.	8.0	26
88	Enriched Pyridinic Nitrogen Atoms at Nanoholes of Carbon Nanohorns for Efficient Oxygen Reduction. Scientific Reports, 2019, 9, 20170.	3.3	26
89	Raman and Fluorescence Spectroscopic Studies of a DNA-Dispersed Double-Walled Carbon Nanotube Solution. ACS Nano, 2010, 4, 1060-1066.	14.6	25
90	Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: A resonance Raman study of individual C60-derived double-wall carbon nanotubes. Nanoscale, 2010, 2, 406-411.	5.6	25

#	Article	IF	CITATIONS
91	Bulk Synthesis of Narrow Diameter and Highly Crystalline Tripleâ€Walled Carbon Nanotubes by Coalescing Fullerene Peapods. Advanced Materials, 2011, 23, 1761-1764.	21.0	25
92	Thermal performance, freeze-and-thaw resistance, and bond strength of cement mortar using rice husk-derived graphene. Construction and Building Materials, 2017, 146, 350-359.	7.2	25
93	Structural evolution of hydrothermal carbon spheres induced by high temperatures and their electrical properties under compression. Carbon, 2017, 121, 426-433.	10.3	25
94	Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser. Composites Part B: Engineering, 2019, 175, 107065.	12.0	25
95	Anomalous restoration of sp ² hybridization in graphene functionalization. Nanoscale, 2020, 12, 13351-13359.	5.6	25
96	Role of Intertube Interactions in Double- and Triple-Walled Carbon Nanotubes. ACS Nano, 2014, 8, 1330-1341.	14.6	24
97	Comparison of the Resonance Raman Behavior of Double-Walled Carbon Nanotubes Doped with Bromine or Iodine Vapors. Journal of Physical Chemistry C, 2009, 113, 3934-3938.	3.1	23
98	Soluble conducting polymer-functionalized graphene oxide for air-operable actuator fabrication. Journal of Materials Chemistry A, 2014, 2, 4788-4794.	10.3	23
99	Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids. Scientific Reports, 2016, 6, 20083.	3.3	23
100	Enhanced Thermal Conductivity of Individual Polymeric Nanofiber Incorporated with Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2017, 121, 7025-7029.	3.1	23
101	Quantifying Carbon Edge Sites on Depressing Hydrogen Evolution Reaction Activity. Nano Letters, 2020, 20, 5885-5892.	9.1	23
102	Selective De-Cross-Linking of Transformable, Double-Network Hydrogels: Preparation, Structural Conversion, and Controlled Release. ACS Applied Materials & Interfaces, 2018, 10, 42985-42991.	8.0	22
103	Anharmonicity and Universal Response of Linear Carbon Chain Mechanical Properties under Hydrostatic Pressure. Physical Review Letters, 2020, 125, 105501.	7.8	22
104	Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen. Carbon, 2020, 167, 881-887.	10.3	22
105	Mechanically Tough, Electrically Conductive Polyethylene Oxide Nanofiber Web Incorporating DNA-Wrapped Double-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2013, 5, 4150-4154.	8.0	20
106	Hydrogen-assisted pulsed KrF-laser irradiation for the in situ photoreduction of graphene oxide films. Carbon, 2014, 77, 857-867.	10.3	20
107	Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications. Carbon Letters, 2020, 30, 527-534.	5.9	20
108	Carbon nanotube fibers with high specific electrical conductivity: Synergistic effect of heteroatom doping and densification. Carbon, 2021, 184, 207-213.	10.3	20

#	Article	IF	CITATIONS
109	High-capacitance supercapacitors using nitrogen-decorated porous carbon derived from novolac resin containing peptide linkage. Electrochimica Acta, 2010, 55, 5624-5628.	5.2	19
110	Evaluation of CNT toxicity by comparison to tattoo ink. Materials Today, 2011, 14, 434-440.	14.2	19
111	Behavior of the high frequency Raman modes of double-wall carbon nanotubes after doping with bromine or iodine vapors. Carbon, 2011, 49, 3585-3596.	10.3	19
112	Diameter-selective separation of double-walled carbon nanotubes. Applied Physics Letters, 2008, 93, 223107.	3.3	18
113	Defectâ€Enhanced Dispersion of Carbon Nanotubes in DNA Solutions. ChemPhysChem, 2009, 10, 2414-2417.	2.1	18
114	Carbon Nanotube Core Graphitic Shell Hybrid Fibers. ACS Nano, 2013, 7, 10971-10977.	14.6	18
115	Rapid, repetitive and selective NO2 gas sensor based on boron-doped activated carbon fibers. Applied Surface Science, 2020, 531, 147395.	6.1	18
116	TEM image simulation study of small carbon nanotubes and carbon nanowire. Carbon, 2006, 44, 1130-1136.	10.3	17
117	Optical spectroscopic studies of photochemically oxidized single-walled carbon nanotubes. Nanotechnology, 2009, 20, 105708.	2.6	17
118	Electrochemical role of oxygen containing functional groups on activated carbon electrode. RSC Advances, 2014, 4, 62678-62683.	3.6	17
119	Defect-Assisted Heavily and Substitutionally Boron-Doped Thin Multiwalled Carbon Nanotubes Using High-Temperature Thermal Diffusion. Journal of Physical Chemistry C, 2014, 118, 4454-4459.	3.1	17
120	Electrical monitoring of photoisomerization of block copolymers intercalated into graphene sheets. Nature Communications, 2020, 11, 1324.	12.8	17
121	Effect of plasma surface modification on pullout characteristics of carbon fiber-reinforced cement composites. Carbon Trends, 2021, 3, 100030.	3.0	17
122	A new strategy of carbon – Pb composite as a bipolar plate material for unitized regenerative fuel cell system. Electrochimica Acta, 2021, 391, 138921.	5.2	17
123	Pulsed KrF-laser synthesis of single-wall-carbon-nanotubes: effects of catalyst content and furnace temperature on their nanostructure and photoluminescence properties. Journal of Nanoparticle Research, 2011, 13, 5759-5767.	1.9	16
124	Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence. Nanoscale, 2012, 4, 130-136.	5.6	16
125	Intensive synergetic Cs adsorbent incorporated with polymer spongiform for scalable purification without post filtration. Materials Express, 2013, 3, 21-29.	0.5	16
	<mml:math< td=""><td></td><td></td></mml:math<>		

xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>G</mml:mi><mml:mo>â€2</mml:mœ.2/mml:mœup></mm in double- and triple-walled carbon nanotubes: A Raman study. Physical Review B, 2015, 91, . 126

#	Article	IF	CITATIONS
127	Preparation of compressible polymer monoliths that contain mesopores capable of rapid oil–water separation. Polymer Chemistry, 2019, 10, 5142-5150.	3.9	16
128	Preparation of carbon-containing, compressible, microporous, polymeric monoliths that regulate macroscopic conductivity. Polymer Chemistry, 2019, 10, 852-859.	3.9	16
129	Boron Atoms as Loop Accelerator and Surface Stabilizer in Plateletâ€Type Carbon Nanofibers. ChemPhysChem, 2010, 11, 2345-2348.	2.1	15
130	Densifying and strengthening of electrospun polyacrylonitrileâ€based nanofibers by uniaxial twoâ€step stretching. Journal of Applied Polymer Science, 2016, 133, .	2.6	15
131	Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based nanohybrids grown by pulsed laser deposition. Carbon, 2016, 96, 145-152.	10.3	15
132	Chemical assembling of amine functionalized boron nitride nanotubes onto polymeric nanofiber film for improving their thermal conductivity. RSC Advances, 2018, 8, 4426-4433.	3.6	15
133	Deriving structural perfection in the structure of polyacrylonitril-based electrospun carbon nanofibers. Carbon, 2019, 147, 612-615.	10.3	14
134	CdSe quantum dot-decorated double walled carbon nanotubes: The effect of chemical moieties. Applied Physics Letters, 2008, 93, 051901.	3.3	13
135	Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. RSC Advances, 2013, 3, 4161.	3.6	13
136	Rationally engineered surface properties of carbon nanofibers for the enhanced supercapacitive performance of binary metal oxide nanosheets. Journal of Materials Chemistry A, 2015, 3, 19867-19872.	10.3	13
137	N-Enriched carbon nanofibers for high energy density supercapacitors and Li-ion batteries. RSC Advances, 2019, 9, 36075-36081.	3.6	13
138	Oxidation and Thermal Stability of Linear Carbon Chains Contained in Thermally Treated Double-Walled Carbon Nanotubes. Small, 2007, 3, 788-792.	10.0	12
139	High-Performance Rubber Sealant for Preventing Water Leaks. Industrial & Engineering Chemistry Research, 2010, 49, 9798-9802.	3.7	12
140	Atomic layer coating of hafnium oxide on carbon nanotubes for high-performance field emitters. Applied Physics Letters, 2011, 99, .	3.3	12
141	A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. Nanoscale, 2013, 5, 10212.	5.6	12
142	Enhanced thermal conductivity and mechanical properties of polyurethane composites with the introduction of thermally annealed carbon nanotubes. Macromolecular Research, 2017, 25, 1015-1021.	2.4	12
143	PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Materials Today Energy, 2020, 16, 100378.	4.7	12
144	Edgeless porous carbon coating for durable and powerful lead-carbon batteries. Carbon, 2021, 185, 419-427.	10.3	12

#	Article	IF	CITATIONS
145	Vertically and Horizontally Drawing Formation of Graphite Pencil Electrodes on Paper by Frictional Sliding for a Disposable and Foldable Electronic Device. ACS Omega, 2021, 6, 1960-1970.	3.5	12
146	Hysteretic transfer characteristics of double-walled and single-walled carbon nanotube field-effect transistors. Applied Physics Letters, 2007, 91, 143118.	3.3	11
147	Self-assembled palladium nanoparticles on carbon nanofibers. Nanotechnology, 2008, 19, 145602.	2.6	11
148	Covalent Attachment of Aromatic Diisocyanate to the Sidewalls of Single- and Double-Walled Carbon Nanotubes. European Journal of Inorganic Chemistry, 2010, 2010, 4305-4308.	2.0	11
149	Combined catalyst system for preferential growth of few-walled carbon nanotubes. Carbon, 2009, 47, 2543-2546.	10.3	10
150	Hydrolytic Unzipping of Boron Nitride Nanotubes in Nitric Acid. Nanoscale Research Letters, 2017, 12, 94.	5.7	10
151	Single-walled carbon nanotube-mediated physical gelation of binary polymer blends: An efficient route to versatile porous carbon electrode materials. Chemical Engineering Journal, 2018, 353, 849-857.	12.7	10
152	Enhanced Thermoelectric Properties of WS2/Single-Walled Carbon Nanohorn Nanocomposites. Crystals, 2020, 10, 140.	2.2	10
153	Structure and basic properties of cup-stacked type carbon nanofiber. Molecular Crystals and Liquid Crystals, 2002, 387, 167-171.	0.9	9
154	Raman study on electrochemical lithium insertion into multiwalled carbon nanotubes. Journal of Raman Spectroscopy, 2008, 39, 1183-1188.	2.5	9
155	A simple route to short cup-stacked carbon nanotubes by sonication. Carbon, 2010, 48, 3643-3647.	10.3	9
156	Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages. Particle and Particle Systems Characterization, 2013, 30, 76-82.	2.3	9
157	Surface Modification of Electrospun Polyvinylidene Fluoride Nanofiber Membrane by Plasma Treatment for Protein Detection. Journal of Nanoscience and Nanotechnology, 2013, 13, 674-677.	0.9	9
158	Low interfacial contact resistance of Al-graphene composites via interface engineering. Nanotechnology, 2015, 26, 215603.	2.6	9
159	Synthesis of outer tube-selectively nitrogen-doped double-walled carbon nanotubes by nitrogen plasma treatment. Nanoscale, 2018, 10, 15938-15942.	5.6	9
160	Mussel adhesive protein-coated titanium oxide nanoparticles for effective NO removal from versatile substrates. Chemical Engineering Journal, 2019, 378, 122164.	12.7	9
161	Thermodynamics of Linear Carbon Chains. Physical Review Letters, 2021, 126, 125901.	7.8	9
162	Controlled growth of one-dimensional clusters of molybdenum atoms using double-walled carbon nanotube templating. Applied Physics Letters, 2009, 94, .	3.3	8

#	Article	IF	CITATIONS
163	Unusually High Dispersion of Nitrogen-Doped Carbon Nanotubes in DNA Solution. Journal of Physical Chemistry B, 2011, 115, 14295-14300.	2.6	8
164	Pressure Tuning of Bromine Ionic States in Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 10609-10619.	3.1	8
165	Selective Incorporation of Aqueous-Phase SWNTs into Pine Cones: A Unique Route to Creating Versatile Carbon Precursors for Electrode Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 12426-12435.	6.7	8
166	Polymer wrapping-induced dispersion of single walled carbon nanotubes in ethylene glycol under mild sonication. RSC Advances, 2020, 10, 26262-26267.	3.6	8
167	Influenza–Host Interplay and Strategies for Universal Vaccine Development. Vaccines, 2020, 8, 548.	4.4	8
168	Outer Tube-Selectively Boron-Doped Double-Walled Carbon Nanotubes for Thermoelectric Applications. ACS Applied Nano Materials, 2020, 3, 3347-3354.	5.0	8
169	Sequential doping of nitrogen and oxygen in single-walled carbon nanohorns for use as supercapacitor electrodes. Microporous and Mesoporous Materials, 2021, 310, 110595.	4.4	8
170	Boron-Doped Edges as Active Sites for Water Adsorption in Activated Carbons. Langmuir, 2021, 37, 13179-13186.	3.5	8
171	Singleâ€wall carbon nanotube interactions with copperâ€oxamato building block of moleculeâ€based magnets probed by resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 1951-1956.	2.5	7
172	A selective way to create defects by the thermal treatment of fluorinated double walled carbon nanotubes. Chinese Journal of Catalysis, 2014, 35, 864-868.	14.0	7
173	Spontaneously restored electrical conductivity of bioactive gel comprising mussel adhesive protein-coated carbon nanotubes. RSC Advances, 2016, 6, 87044-87048.	3.6	7
174	Synthesis and characterization of graphene from rice husks. Tanso, 2016, 2016, 182-190.	0.1	7
175	Transparent and Conductive Polyethylene Oxide Film by the Introduction of Individualized Singleâ€Walled Carbon Nanotubes. Macromolecular Rapid Communications, 2009, 30, 2084-2088.	3.9	6
176	Sensitive G-Band Raman Features for the Electrical Conductivity of Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3940-3944.	0.9	6
177	An environmentally friendly approach to functionalizing carbon nanotubes for fabricating a strong biocomposite Film. RSC Advances, 2014, 4, 5382.	3.6	6
178	Microporous Organic Polymers: A Synthetic Platform for Engineering Heterogeneous Carbocatalysts. ChemSusChem, 2021, 14, 624-631.	6.8	6
179	Highly conductive current collector for enhancing conductivity and power supply of flexible thin-film Zn–MnO2 battery. Energy, 2021, 221, 119856.	8.8	6
180	Microstructural change of cup-stacked carbon nanofiber by post-treatment. Molecular Crystals and Liquid Crystals, 2002, 387, 157-161.	0.9	5

#	Article	IF	CITATIONS
181	Determination of the stacking order of curved few-layered graphene systems. Nanoscale, 2012, 4, 6419.	5.6	5
182	Boron-assisted coalescence of parallel multi-walled carbon nanotubes. RSC Advances, 2013, 3, 26266.	3.6	5
183	Electro-conductively deposited carbon fibers for power controllable heating elements. RSC Advances, 2015, 5, 26998-27002.	3.6	5
184	Effect of low processing rate on homogeneous microstructural evolution of polyacrylonitrile-based carbon fibers. Carbon Letters, 2019, 29, 479-485.	5.9	5
185	Hierarchical Design of Functional, Fibrous, and Microporous Polymer Monoliths for the Molecular Recognition of Diethylstilbestrol. Analytical Chemistry, 2021, 93, 13513-13519.	6.5	5
186	Tuning the microphase behavior of carbon-precursor polymer blends with surfactant-like nanotubes: Toward catalyst support for water splitting. Chemical Engineering Journal, 2022, 431, 134027.	12.7	4
187	Pressure-induced structural transformations on linear carbon chains encapsulated in carbon nanotubes: A potential route for obtaining longer chains and ultra-hard composites. Carbon, 2022, 196, 20-28.	10.3	4
188	Applications of Advanced Carbon Materials to the Lithium Ion Secondary Battery. , 2003, , 417-433.		3
189	Photocatalysis-induced selective decoration of semiconducting single walled carbon nanotubes: hole-doping effect. Chemical Communications, 2010, 46, 6977.	4.1	3
190	Thermostable Natural Rubber with Cellular Structure Using Thin Multiwalled Carbon Nanotubes. ChemSusChem, 2011, 4, 931-934.	6.8	3
191	Carbon fibers for treatment of cancer metastasis in bone. RSC Advances, 2020, 10, 33071-33079.	3.6	3
192	An experimental investigation of the feasibility of Pb based bipolar plate material for unitized regenerative fuel cells system. International Journal of Hydrogen Energy, 2020, 45, 13101-13107.	7.1	3
193	Production of Carbon Nanotube and Carbon Nanofiber. Journal of Fiber Science and Technology, 2003, 59, P.412-P.416.	0.0	2
194	Single-wall carbon nanotube modified with copper-oxamate flat complex probed by synchrotron x-ray photoelectron and x-ray absorption spectroscopies. Journal of Molecular Structure, 2019, 1176, 711-717.	3.6	2
195	Gas Barrier Performance of Hexagonal Boron Nitride Monolayers Grown on Copper Foils with Electrochemical Polishing. Applied Sciences (Switzerland), 2021, 11, 4599.	2.5	2
196	Flexible Transparent Conducting Films Composed of Photochemically Oxidized Thin Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2016, 16, 11980-11985.	0.9	2
197	Improved efficiency of green GaN LEDs via exciton–surface plasmon coupling by Au nanoclusters embedded in a micro-hole patterned p-GaN layer. Applied Physics Letters, 2021, 119, .	3.3	2
198	Sharma <i>etÂal.</i> Reply:. Physical Review Letters, 2022, 128, .	7.8	2

#	Article	IF	CITATIONS
199	Graphitization Behaviors of Vapor-Grown Carbon Fibers with Different Diameters as Studied by Raman Spectroscopy. Molecular Crystals and Liquid Crystals, 2000, 340, 355-359.	0.3	1
200	Exocellulase Activity of Cellobiohydrolase Immobilized on DNAâ€Wrapped Singleâ€Walled Carbon Nanotubes. ChemSusChem, 2011, 4, 1595-1597.	6.8	1
201	Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides. Applied Physics Express, 2012, 5, 105001.	2.4	1
202	Optical sensitivity of mussel protein-coated double-walled carbon nanotubes on the iron–DOPA conjugation bond. RSC Advances, 2016, 6, 16308-16313.	3.6	1
203	Thermal treatment-induced structural changes in graphene nanoribbons obtained from partially unzipped double-walled carbon nanotubes. RSC Advances, 2016, 6, 91562-91566.	3.6	1
204	Effects of electromagnetic irradiation on low-molecular-weight fraction of fluidized catalytic cracking decant oil for synthesis of pitch precursor. Journal of Industrial and Engineering Chemistry, 2020, 82, 205-210.	5.8	1
205	Swelling and interfacial characterization of multi-walled carbon nanotubes/natural rubber composites. Tanso, 2010, 2010, 147-152.	0.1	1
206	Hrtem observation of ball-milled lampshade carbon nanofiber. Molecular Crystals and Liquid Crystals, 2002, 387, 141-144.	0.9	0
207	Optical Spectroscopic Studies of Thermally Coalesced Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3878-3883.	0.9	0
208	Biocomposites: Mechanically Robust, Electrically Conductive Biocomposite Films Using Antimicrobial Chitosan-Functionalized Graphenes (Part. Part. Syst. Charact. 8/2013). Particle and Particle Systems Characterization, 2013, 30, 648-648.	2.3	0
209	Molybdenum-encapsulation modified the optical property of single walled carbon nanotubes. RSC Advances, 2014, 4, 54747-54751.	3.6	0
210	Carbonaceous Anode Materials. Green Energy and Technology, 2015, , 135-156.	0.6	0
211	Pressure-sensitive polymer nanocomposites: Carbon nanofiber-reinforced MWCNT-coated PMMA microbeads. Polymer-Plastics Technology and Materials, 2019, 58, 1793-1801.	1.3	0
212	Environmental effects, intertube interactions and σ-π bond re-hybridization in bundles of double- and triple-walled carbon nanotubes. Carbon, 2020, 158, 651-661.	10.3	0
213	Importance of Doping Sequence in Multiple Heteroatom-Doped Reduced Graphene Oxide as Efficient Oxygen Reduction Reaction Electrocatalysts. Applied Nano, 2021, 2, 267-277.	2.0	0
214	Structural Design and Functions of Carbon Materials by Alloying in Atomic and Molecular Scales. , 2003, , 41-55.		0
215	æ°—ç›,æ^é••ã,«ãf¼ãfœãf³ãfŠãfŽãfãf¥ãf¼ãf–ãf»ãfŠãfŽãf•ã,¡ã,¤fãf1¼ã®å•æ^ã¤ãã®æ§‹é€è§£æž• Hyomen	Kagnaku, 2	00 4) 25, 352
216	Purification and structural evolution of carbon nanoscrolls by heat treatment. Tanso, 2012, 2012, 231-236	0.1	0

231-236.

#	Article	IF	CITATIONS
217	Preparation and structure analysis of double wall-carbon nanotubes encapsulating gadolinium trichloride nanowires. Tanso, 2013, 2013, 279-283.	0.1	0
218	CNT Buckypaper-Polyurethane Composite with Enhanced Strength, Toughness and Flexible. Composites Research, 2016, 29, 161-166.	0.1	0
219	Enhancement of the Thermoelectric Power Factor for Bismuth Antimony Telluride Based Composites Containing Single-Walled Carbon Nanohorns. New Physics: Sae Mulli, 2020, 70, 226-231.	0.1	0