Xiao Liang

List of Publications by Citations

Source: https://exaly.com/author-pdf/9131887/xiao-liang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22 6,658 17 23 g-index

23 7,744 19.1 6.46 L-index

#	Paper	IF	Citations
22	A highly efficient polysulfide mediator for lithium-sulfur batteries. <i>Nature Communications</i> , 2015 , 6, 56	8 2 7.4	1385
21	Advances in lithium ulfur batteries based on multifunctional cathodes and electrolytes. <i>Nature Energy</i> , 2016 , 1,	62.3	1317
20	Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3907-11	16.4	848
19	A facile surface chemistry route to a stabilized lithium metal anode. <i>Nature Energy</i> , 2017 , 2,	62.3	618
18	A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. <i>Advanced Materials</i> , 2015 , 27, 6021-8	24	595
17	Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts. <i>Advanced Materials</i> , 2017 , 29, 1603040	24	451
16	Tuning Transition Metal OxideBulfur Interactions for Long Life Lithium Sulfur Batteries: The Coldilocks Principle. <i>Advanced Energy Materials</i> , 2016 , 6, 1501636	21.8	448
15	In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes. <i>ACS Nano</i> , 2016 , 10, 4192-8	16.7	302
14	A Comprehensive Approach toward Stable LithiumBulfur Batteries with High Volumetric Energy Density. <i>Advanced Energy Materials</i> , 2017 , 7, 1601630	21.8	240
13	Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 3979-3983	3.6	158
12	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9795-9798	16.4	98
11	A four-electron Zn-I aqueous battery enabled by reversible I/I/I conversion. <i>Nature Communications</i> , 2021 , 12, 170	17.4	31
10	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. <i>Angewandte Chemie</i> , 2018 , 130, 9943-9946	3.6	31
9	Comprehensive Design of the High-Sulfur-Loading Li-S Battery Based on MXene Nanosheets. <i>Nano-Micro Letters</i> , 2020 , 12, 112	19.5	30
8	Insights into the Structure Stability of Prussian Blue for Aqueous Zinc Ion Batteries. <i>Energy and Environmental Materials</i> , 2021 , 4, 111-116	13	28
7	Akin solidBolid biphasic conversion of a LiB battery achieved by coordinated carbonate electrolytes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12498-12506	13	26
6	A High-Performance Aqueous Zinc-Bromine Static Battery. <i>IScience</i> , 2020 , 23, 101348	6.1	24

LIST OF PUBLICATIONS

A Tandem Electrocatalysis of Sulfur Reduction by Bimetal 2D MOFs. *Advanced Energy Materials*,2102819_{21.8} 9

4	Size-Dependent Cobalt Catalyst for Lithium Sulfur Batteries: From Single Atoms to Nanoclusters and Nanoparticles <i>Small Methods</i> , 2021 , 5, e2100571	12.8	6
3	Long-Life Zn Anode Enabled by Low Volume Concentration of a Benign Electrolyte Additive. <i>Advanced Functional Materials</i> ,2200606	15.6	5
2	Electrolyte Solvation Chemistry for the Solution of High-Donor-Number Solvent for Stable Li-S Batteries <i>Small</i> , 2022 , e2200046	11	4
1	Lithium-Sulfur Batteries: Tuning Transition Metal OxideBulfur Interactions for Long Life Lithium Sulfur Batteries: The BoldilocksPrinciple (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6,	21.8	3