Junliang Sun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9131776/junliang-sun-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

241 9,720 47 92 h-index g-index citations papers 6.34 272 12,024 9.4 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
241	A general method for searching for homometric structures <i>Acta Crystallographica Section B:</i> Structural Science, Crystal Engineering and Materials, 2022 , 78, 14-19	1.8	
240	Crystal structure and optical performance analysis of a new type of persistent luminescence material with multi-functional application prospects. <i>Journal of Energy Chemistry</i> , 2022 , 69, 150-160	12	3
239	Synthesis of crystalline WS3 with a layered structure and desert-rose-like morphology. <i>Nanoscale Advances</i> , 2022 , 4, 1626-1631	5.1	
238	Accurate structure determination of nanocrystals by continuous precession electron diffraction tomography. <i>Science China Materials</i> , 2022 , 65, 1417-1420	7.1	
237	Synthesis, Structure and Superconducting Properties of Ba1-xLax/4K3x/4(Bi0.25Pb0.75)O3-Perovskites. <i>Physica C: Superconductivity and Its Applications</i> , 2022 , 598, 1354075	1.3	
236	Crystalline Sponge Method by Three-Dimensional Electron Diffraction <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 821927	5.6	O
235	Tailoring the Pore Surface of 3D Covalent Organic Frameworks via Post-Synthetic Click Chemistry. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	4
234	Guest-Induced Switching of a Molecule-Based Magnet in a 3d-4f Heterometallic Cluster-Based Chain Structure. <i>Inorganic Chemistry</i> , 2021 , 60, 633-641	5.1	3
233	A Deep-UV Nonlinear Optical Borosulfate with Incommensurate Modulations. <i>Angewandte Chemie</i> , 2021 , 133, 11558-11564	3.6	5
232	A Deep-UV Nonlinear Optical Borosulfate with Incommensurate Modulations. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11457-11463	16.4	13
231	Stable, Efficient, Copper Coordination Polymer-Derived Heterostructured Catalyst for Oxygen Evolution under pH-Universal Conditions. <i>ACS Applied Materials & Design Applied & </i>	1 ^{9.5}	O
230	EMM-25: The Structure of Two-Dimensional 11 🛮 0 Medium-Pore Borosilicate Zeolite Unraveled Using 3D Electron Diffraction. <i>Chemistry of Materials</i> , 2021 , 33, 4146-4153	9.6	4
229	Tuning the Topology of Three-Dimensional Covalent Organic Frameworks via Steric Control: From to Unprecedented. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7279-7284	16.4	23
228	HPM-14: A New Germanosilicate Zeolite with Interconnected Extra-Large Pores Plus Odd-Membered and Small Pores*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3438-3442	16.4	4
227	Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks. <i>Nature Materials</i> , 2021 , 20, 222-228	27	104
226	Triptycene-based three-dimensional covalent organic frameworks with stp topology of honeycomb structure. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 944-949	7.8	14
225	Structure-direction towards the new large pore zeolite NUD-3. Chemical Communications, 2021, 57, 191	-3994	6

(2020-2021)

224	HPM-14: A New Germanosilicate Zeolite with Interconnected Extra-Large Pores Plus Odd-Membered and Small Pores**. <i>Angewandte Chemie</i> , 2021 , 133, 3480-3484	3.6	2	
223	Rare earth elements based oxide ion conductors. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1374-1398	6.8	5	
222	Binding and separation of CO2, SO2 and C2H2 in homo- and hetero-metallic metal@rganic framework materials. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7190-7197	13	4	
221	A Crystalline Three-Dimensional Covalent Organic Framework with Flexible Building Blocks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2123-2129	16.4	33	
220	Guest-Binding-Induced Interhetero Hosts Charge Transfer Crystallization: Selective Coloration of Commonly Used Organic Solvents. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1553-1561	16.4	9	
219	An Intriguing Polarization Configuration of Mixed Ising- and Nël-Type Model in the Prototype PbZrO-Based Antiferroelectrics. <i>Inorganic Chemistry</i> , 2021 , 60, 3232-3237	5.1	2	
218	Structural origin of the high-voltage instability of lithium cobalt oxide. <i>Nature Nanotechnology</i> , 2021 , 16, 599-605	28.7	42	
217	Constructing Concentration and Temperature Controllable Blue-Green Emission in a Single-Component Solid-State Phosphor. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 27420-27428	3.8		
216	Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). <i>Angewandte Chemie</i> , 2020 , 132, 11624-11629	3.6	3	
215	IDM-1: A Zeolite with Intersecting Medium and Extra-Large Pores Built as an Expansion of Zeolite MFI. <i>Angewandte Chemie</i> , 2020 , 132, 11379-11382	3.6	6	
214	Seeded growth of large single-crystal copper foils with high-index facets. <i>Nature</i> , 2020 , 581, 406-410	50.4	68	
213	Single crystal of a one-dimensional metallo-covalent organic framework. <i>Nature Communications</i> , 2020 , 11, 1434	17.4	26	
212	Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11527-11532	16.4	10	
211	Processing Natural Wood into an Efficient and Durable Solar Steam Generation Device. <i>ACS Applied Materials & Mate</i>	9.5	28	
21 0	Non-Interpenetrated Single-Crystal Covalent Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17991-17995	16.4	25	
209	Non-Interpenetrated Single-Crystal Covalent Organic Frameworks. <i>Angewandte Chemie</i> , 2020 , 132, 18 ⁻	1 <i>43</i> 7.6181	1531	
208	Twist Building Blocks from Planar to Tetrahedral for the Synthesis of Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3718-3723	16.4	44	
207	Quasicrystal-related mosaics with periodic lattices interlaid with aperiodic tiles. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2020 , 76, 137-144	1.7	2	

206	An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites. <i>Materials Horizons</i> , 2020 , 7, 1912-1918	14.4	16
205	A SnS: A Structural Incommensurate Modulation Exhibiting Strong Second-Harmonic Generation and a High Laser-Induced Damage Threshold (A=Ba, Sr). <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11861-11865	16.4	35
204	3D Electron Diffraction Unravels the New Zeolite ECNU-23 from the PurelPowder Sample of ECNU-21. <i>Angewandte Chemie</i> , 2020 , 132, 1182-1186	3.6	3
203	3D Electron Diffraction Unravels the New Zeolite ECNU-23 from the "Pure" Powder Sample of ECNU-21. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1166-1170	16.4	9
202	Synthesis and characterizations of TiNBBA-15 mesoporous materials for CO2 dry reforming enhancement. <i>Pure and Applied Chemistry</i> , 2020 , 92, 545-556	2.1	1
201	Atomically Dispersed Mo Supported on Metallic Co9S8 Nanoflakes as an Advanced Noble-Metal-Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. <i>Advanced Energy Materials</i> , 2020 , 10, 1903137	21.8	97
200	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3624-3629	16.4	102
199	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. <i>Angewandte Chemie</i> , 2020 , 132, 3653-3658	3.6	20
198	Highly Conducting OrganicIhorganic Hybrid Copper Sulfides CuxC6S6 (x=4 or 5.5): Ligand-Based Oxidation-Induced Chemical and Electronic Structure Modulation. <i>Angewandte Chemie</i> , 2020 , 132, 2279	913-2279	98
197	Redox-triggered switching in three-dimensional covalent organic frameworks. <i>Nature Communications</i> , 2020 , 11, 4919	17.4	21
197 196		17.4 3.5	21
	Communications, 2020 , 11, 4919	, ,	8
196	Communications, 2020, 11, 4919 Acetonitrile-Based Electrolytes for Rechargeable Zinc Batteries. Energy Technology, 2020, 8, 2000358	3.5	8
196 195	Acetonitrile-Based Electrolytes for Rechargeable Zinc Batteries. Energy Technology, 2020, 8, 2000358 Diverse crystal size effects in covalent organic frameworks. Nature Communications, 2020, 11, 6128 Paramagnetic Conducting Metal Drganic Frameworks with Three-Dimensional Structure.	3.5	8 13
196 195 194	Acetonitrile-Based Electrolytes for Rechargeable Zinc Batteries. Energy Technology, 2020, 8, 2000358 Diverse crystal size effects in covalent organic frameworks. Nature Communications, 2020, 11, 6128 Paramagnetic Conducting Metal Drganic Frameworks with Three-Dimensional Structure. Angewandte Chemie, 2020, 132, 21059-21064 Synthesis, structure, and superconductivity of B-site doped perovskite bismuth lead oxide with	3.5 17.4 3.6	8 13 1
196 195 194	Acetonitrile-Based Electrolytes for Rechargeable Zinc Batteries. Energy Technology, 2020, 8, 2000358 Diverse crystal size effects in covalent organic frameworks. Nature Communications, 2020, 11, 6128 Paramagnetic Conducting Metal Drganic Frameworks with Three-Dimensional Structure. Angewandte Chemie, 2020, 132, 21059-21064 Synthesis, structure, and superconductivity of B-site doped perovskite bismuth lead oxide with indium. Inorganic Chemistry Frontiers, 2020, 7, 3561-3570 Room Temperature Zero Thermal Expansion in a Cubic Cobaltite. Journal of Physical Chemistry	3.5 17.4 3.6 6.8	8 13 1
196 195 194 193	Acetonitrile-Based Electrolytes for Rechargeable Zinc Batteries. Energy Technology, 2020, 8, 2000358 Diverse crystal size effects in covalent organic frameworks. Nature Communications, 2020, 11, 6128 Paramagnetic Conducting Metal@rganic Frameworks with Three-Dimensional Structure. Angewandte Chemie, 2020, 132, 21059-21064 Synthesis, structure, and superconductivity of B-site doped perovskite bismuth lead oxide with indium. Inorganic Chemistry Frontiers, 2020, 7, 3561-3570 Room Temperature Zero Thermal Expansion in a Cubic Cobaltite. Journal of Physical Chemistry Letters, 2020, 11, 6785-6790 Direct plasma phosphorization of Cu foam for Li ion batteries. Journal of Materials Chemistry A,	3.5 17.4 3.6 6.8	8 13 1 4 3

188	Adsorption of Nitrogen Dioxide in a Redox-Active Vanadium Metal-Organic Framework Material. Journal of the American Chemical Society, 2020 , 142, 15235-15239	16.4	20
187	Rational Manipulation of Stacking Arrangements in Three-Dimensional Zeolites Built from Two-Dimensional Zeolitic Nanosheets. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19934-1993	₫ ^{6.4}	1
186	Collective and individual impacts of the cascade doping of alkali cations in perovskite single crystals. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15351-15360	7.1	1
185	Guest-Controlled Incommensurate Modulation in a Meta-Rigid Metal-Organic Framework Material. Journal of the American Chemical Society, 2020 , 142, 19189-19197	16.4	9
184	Modulated structure determination and ion transport mechanism of oxide-ion conductor CeNbO. <i>Nature Communications</i> , 2020 , 11, 4751	17.4	8
183	Highly Conducting Organic-Inorganic Hybrid Copper Sulfides Cu C S (x=4 or 5.5): Ligand-Based Oxidation-Induced Chemical and Electronic Structure Modulation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 22602-22609	16.4	9
182	IDM-1: A Zeolite with Intersecting Medium and Extra-Large Pores Built as an Expansion of Zeolite MFI. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11283-11286	16.4	5
181	A2SnS5: A Structural Incommensurate Modulation Exhibiting Strong Second-Harmonic Generation and a High Laser-Induced Damage Threshold (A=Ba, Sr). <i>Angewandte Chemie</i> , 2020 , 132, 11959-11963	3.6	8
180	Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states. <i>Nature Communications</i> , 2019 , 10, 3872	17.4	36
179	DMAP-Induced Gallium Phosphites with Different Dimensionality. <i>Crystal Growth and Design</i> , 2019 , 19, 6011-6016	3.5	4
178	Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. <i>Nature Communications</i> , 2019 , 10, 4348	17.4	48
177	Mechanistic Insights into Solid-State p-Type Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 26151-26160	3.8	1
176	Photoinduced synthesis of Bi2O3 nanotubes based on oriented attachment. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1424-1428	13	6
175	Hydroxyl free radical route to the stable siliceous Ti-UTL with extra-large pores for oxidative desulfurization. <i>Chemical Communications</i> , 2019 , 55, 1390-1393	5.8	26
174	Insights into the Exfoliation Process of VO『HO Nanosheet Formation Using Real-Time V NMR. <i>ACS Omega</i> , 2019 , 4, 10899-10905	3.9	5
173	A heavy metal-free CuinS quantum dot sensitized NiO photocathode with a Re molecular catalyst for photoelectrochemical CO reduction. <i>Chemical Communications</i> , 2019 , 55, 7918-7921	5.8	12
172	Isostructural Three-Dimensional Covalent Organic Frameworks. <i>Angewandte Chemie</i> , 2019 , 131, 9872-9	- 87.6	22
171	Isostructural Three-Dimensional Covalent Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9770-9775	16.4	72

170	A New Layered Silicogermanate PKU-23 and Its Transformation to a Zeolite with Three-Dimensional Channels. <i>Crystal Growth and Design</i> , 2019 , 19, 2272-2278	3.5	1
169	Superconductivity in Perovskite Ba1⊠KxBi0.30Pb0.70O3□ <i>ChemistrySelect</i> , 2019 , 4, 3135-3139	1.8	4
168	Discovery of Complex Metal Oxide Materials by Rapid Phase Identification and Structure Determination. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4990-4996	16.4	11
167	An NHC-CuCl functionalized metal-organic framework for catalyzing Eboration of Hunsaturated carbonyl compounds. <i>Dalton Transactions</i> , 2019 , 48, 5144-5148	4.3	4
166	Synthesis, characterization and structure of (NH)[ZnVVOH(HO)] with a novel VO layer. <i>Dalton Transactions</i> , 2019 , 48, 4906-4911	4.3	
165	Lone-Pair Enhanced Birefringence in an Alkaline-Earth Metal Tin(II) Phosphate BaSn (PO). <i>Chemistry - A European Journal</i> , 2019 , 25, 5648-5651	4.8	56
164	Rational design of crystalline two-dimensional frameworks with highly complicated topological structures. <i>Nature Communications</i> , 2019 , 10, 4609	17.4	32
163	Flexible Freestanding MoO -Carbon Nanotubes-Nanocellulose Paper Electrodes for Charge-Storage Applications. <i>ChemSusChem</i> , 2019 , 12, 5157-5163	8.3	16
162	Elucidation of correlated disorder in zeolite IM-18. <i>Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials</i> , 2019 , 75, 333-342	1.8	3
161	Nonmetallic metal toward a pressure-induced bad-metal state in two-dimensional CuLiRuO. <i>Chemical Communications</i> , 2019 , 56, 265-268	5.8	1
160	Organic Semiconducting Alloys with Tunable Energy Levels. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6561-6568	16.4	42
159	Cage Based Crystalline Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3843-3848	16.4	45
158	An Interrupted Zeolite PKU-26 and Its Transformation to a Fully Four-Connected Zeolite PKU-27 upon Calcination. <i>Chemistry - A European Journal</i> , 2019 , 25, 3219-3223	4.8	2
157	Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 23404-23409	11.5	25
156	Achieving Highly Efficient Catalysts for Hydrogen Evolution Reaction by Electronic State Modification of Platinum on Versatile Ti3C2Tx (MXene). <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4266-4273	8.3	44
155	Synthesis and Structure Determination of SCM-15: A 3D Large Pore Zeolite with Interconnected Straight 12🗓 2🗓 0-Ring Channels. <i>Chemistry - A European Journal</i> , 2019 , 25, 2184-2188	4.8	13
154	Molybdenum Oxide Nanosheets with Tunable Plasmonic Resonance: Aqueous Exfoliation Synthesis and Charge Storage Applications. <i>Advanced Functional Materials</i> , 2019 , 29, 1806699	15.6	35
153	V2O5[hH2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-ion batteries. <i>Journal of Energy Chemistry</i> , 2019 , 30, 145-151	12	18

(2018-2019)

152	Superconductivity in Perovskite Ba0.85\(\mathbb{I}\)LaxPr0.15(Bi0.20Pb0.80)O3\(\mathbb{I}\)Journal of Superconductivity and Novel Magnetism, 2019 , 32, 167-173	1.5	3
151	Facile Water-Based Strategy for Synthesizing MoO Nanosheets: Efficient Visible Light Photocatalysts for Dye Degradation. <i>ACS Omega</i> , 2018 , 3, 2193-2201	3.9	103
150	An Open-Framework Aluminophosphite with Face-Sharing AlO6 Octahedra Dimers and Extra-Large 14-Ring Channels. <i>Crystal Growth and Design</i> , 2018 , 18, 1267-1271	3.5	7
149	Thermochromic halide perovskite solar cells. <i>Nature Materials</i> , 2018 , 17, 261-267	27	436
148	Superconductivity in Perovskite BaLn(BiPb)O (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). <i>Inorganic Chemistry</i> , 2018 , 57, 1269-1276	5.1	14
147	Synthesis and crystal structure of SrBiO and structural change in the strontium-bismuth-oxide system. <i>Dalton Transactions</i> , 2018 , 47, 1888-1894	4.3	3
146	Highly Diastereo- and Enantioselective Cascade Synthesis of Bicyclic Lactams in One-Pot. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 1158-1164	3.2	5
145	Three-Dimensional Open-Framework Germanate Built from a Novel Ge13 Cluster and Containing Two Types of Chiral Layers. <i>Crystal Growth and Design</i> , 2018 , 18, 928-933	3.5	2
144	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. <i>Nature Communications</i> , 2018 , 9, 1745	17.4	166
143	CsSiB3O7: A Beryllium-Free Deep-Ultraviolet Nonlinear Optical Material Discovered by the Combination of Electron Diffraction and First-Principles Calculations. <i>Chemistry of Materials</i> , 2018 , 30, 2203-2207	9.6	30
142	Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst. <i>ACS Catalysis</i> , 2018 , 8, 4375-4382	13.1	20
141	A Facile and Green Method for the Synthesis of SFE Borosilicate Zeolite and Its Heteroatom-Substituted Analogues with Promising Catalytic Performances. <i>Chemistry - A European Journal</i> , 2018 , 24, 306-311	4.8	5
140	BaMg(BO)F polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. <i>Nature Communications</i> , 2018 , 9, 3089	17.4	157
139	Hierarchical Shell-Like ZSM-5 with Tunable Porosity Synthesized by using a Dissolution-Recrystallization Approach. <i>Chemistry - A European Journal</i> , 2018 , 24, 14974-14981	4.8	10
138	Covalently linking CuInS quantum dots with a Re catalyst by click reaction for photocatalytic CO reduction. <i>Dalton Transactions</i> , 2018 , 47, 10775-10783	4.3	19
137	Effect of zinc doping on structural, magnetic and dielectric properties of perovskite (Tb0.874Mn0.106)MnO3\(\textit{Journal of Materials Science: Materials in Electronics, 2018, 29, 16543-16552}	2.1	
136	Discovery of Layered Indium Hydroxide via a Hydroperoxyl Anion Coordinated Precursor at Room Temperature. <i>Chemistry - A European Journal</i> , 2018 , 24, 15491-15494	4.8	
135	Reversible adsorption of nitrogen dioxide within a robust porous metal-organic framework. <i>Nature Materials</i> , 2018 , 17, 691-696	27	108

134	Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. <i>Nano Research</i> , 2018 , 11, 5787-5798	10	30
133	An AlEgen-based 3D covalent organic framework for white light-emitting diodes. <i>Nature Communications</i> , 2018 , 9, 5234	17.4	182
132	Synthesis, Structure, and Properties of the Non-Centrosymmeteric Compound LiNaRbB5O8(OH)2. <i>Crystal Growth and Design</i> , 2018 , 18, 5745-5749	3.5	2
131	Highly Conducting Neutral Coordination Polymer with Infinite Two-Dimensional Silver-Sulfur Networks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15153-15156	16.4	67
130	Synthesis and Structure of a Layered Fluoroaluminophosphate and Its Transformation to a Three-Dimensional Zeotype Framework. <i>Inorganic Chemistry</i> , 2018 , 57, 11753-11760	5.1	6
129	The Exploration of Carrier Behavior in the Inverted Mixed Perovskite Single-Crystal Solar Cells. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800224	4.6	38
128	Observation of Interpenetration Isomerism in Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6763-6766	16.4	75
127	One-pot synthesis of Cu-modified HNb3O8 nanobelts with enhanced photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10769-10775	13	6
126	Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover. <i>Nature Communications</i> , 2018 , 9, 1914	17.4	59
125	Single-crystal x-ray diffraction structures of covalent organic frameworks. <i>Science</i> , 2018 , 361, 48-52	33.3	521
124	Crystallization of a Novel Germanosilicate ECNU-16 Provides Insights into the Space-Filling Effect on Zeolite Crystal Symmetry. <i>Chemistry - A European Journal</i> , 2018 , 24, 9247-9253	4.8	4
123	Synthesis and characterization of germanosilicate molecular sieves: GeO/SiO ratio, HO/TO ratio and temperature. <i>Dalton Transactions</i> , 2017 , 46, 2270-2280	4.3	11
122	Enhancement of Ferroelectricity for Orthorhombic (TbMn)MnO by Copper Doping. <i>Inorganic Chemistry</i> , 2017 , 56, 3475-3482	5.1	8
121	Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. <i>Advanced Energy Materials</i> , 2017 , 7, 1602725	21.8	360
120	Synthesis, structure and magnetic properties of (Eu1⊠Mnx)MnO3□RSC Advances, 2017 , 7, 2019-2024	3.7	10
119	Electron Crystallography Reveals Atomic Structures of Metal-Organic Nanoplates with M(EO)(EOH)(EOH) (M = Zr, Hf) Secondary Building Units. <i>Inorganic Chemistry</i> , 2017 , 56, 8128-8134	5.1	44
118	Simple CTAB surfactant-assisted hierarchical lamellar MWW titanosilicate: a high-performance catalyst for selective oxidations involving bulky substrates. <i>Catalysis Science and Technology</i> , 2017 , 7, 2874-2885	5.5	17
117	The intrinsic properties of FA(1½)MAxPbI3 perovskite single crystals. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8537-8544	13	110

116	Synthesis and Structure Determination of Large-Pore Zeolite SCM-14. <i>Chemistry - A European Journal</i> , 2017 , 23, 16829-16834	4.8	14
115	Application of X-ray Diffraction and Electron Crystallography for Solving Complex Structure Problems. <i>Accounts of Chemical Research</i> , 2017 , 50, 2737-2745	24.3	44
114	Topotactic Reduction toward a Noncentrosymmetric Deficient Perovskite Tb0.50Ca0.50Mn0.96O2.37 with Ordered Mn Vacancies and Piezoelectric Behavior. <i>Chemistry of Materials</i> , 2017 , 29, 9840-9850	9.6	7
113	Unusual Long-Range Ordering Incommensurate Structural Modulations in an Organic Molecular Ferroelectric. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15900-15906	16.4	21
112	Stomata-like metal peptide coordination polymer. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23440-2344	15 3	5
111	A crystalline AlPO-5 intermediate: designed synthesis, structure, and phase transformation. <i>Dalton Transactions</i> , 2017 , 46, 12209-12216	4.3	5
110	A Water Based Synthesis of Ultrathin Hydrated Vanadium Pentoxide Nanosheets for Lithium Battery Application: Free Standing Electrodes or Conventionally Casted Electrodes?. <i>Electrochimica Acta</i> , 2017 , 252, 254-260	6.7	11
109	PKU-21: A Novel Layered Germanate Built from Ge and Ge Clusters for CO Separation. <i>Chemistry - A European Journal</i> , 2017 , 23, 17879-17884	4.8	
108	Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate Ag2Se. <i>Physical Review B</i> , 2017 , 96,	3.3	18
107	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. <i>Science Bulletin</i> , 2017 , 62, 1074-1080	10.6	326
106	Superconductivity of Perovskite Ba1⊠ Y x (Bi0.2Pb0.8)O3□Journal of Superconductivity and Novel Magnetism, 2017 , 30, 1705-1712	1.5	6
105	Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater. <i>Journal of Environmental Sciences</i> , 2017 , 56, 254-262	6.4	67
104	Hierarchical Co(OH)F Superstructure Built by Low-Dimensional Substructures for Electrocatalytic Water Oxidation. <i>Advanced Materials</i> , 2017 , 29, 1700286	24	167
103	A multi-dimensional quasi-zeolite with 12 🗓 0 🗗 - ring channels demonstrates high thermal stability and good gas adsorption selectivity. <i>Chemical Science</i> , 2016 , 7, 3025-3030	9.4	11
102	Selective Adsorption of Sulfur Dioxide in a Robust Metal-Organic Framework Material. <i>Advanced Materials</i> , 2016 , 28, 8705-8711	24	161
101	Structure determination of modulated structures by powder X-ray diffraction and electron diffraction. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1351-1362	6.8	7
100	Recent Advances in the Synthesis and Application of Two-Dimensional Zeolites. <i>Advanced Energy Materials</i> , 2016 , 6, 1600441	21.8	46
99	A one-step water based strategy for synthesizing hydrated vanadium pentoxide nanosheets from VO2(B) as free-standing electrodes for lithium battery applications. <i>Journal of Materials Chemistry</i> 4 2016 4 17988-18001	13	32

98	Pressure-Driven Cooperative Spin-Crossover, Large-Volume Collapse, and Semiconductor-to-Metal Transition in Manganese(II) Honeycomb Lattices. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15751-15757	16.4	50
97	A Cu-Based Nanoparticulate Film as Super-Active and Robust Catalyst Surpasses Pt for Electrochemical H2 Production from Neutral and Weak Acidic Aqueous Solutions. <i>Advanced Energy Materials</i> , 2016 , 6, 1502319	21.8	34
96	Elucidation of Adsorbate Structures and Interactions on Brūsted Acid Sites in H-ZSM-5 by Synchrotron X-ray Powder Diffraction. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5981-4	16.4	24
95	Self-Assembly of Cetyltrimethylammonium Bromide and Lamellar Zeolite Precursor for the Preparation of Hierarchical MWW Zeolite. <i>Chemistry of Materials</i> , 2016 , 28, 4512-4521	9.6	65
94	Self-Supporting Metal@rganic Layers as Single-Site Solid Catalysts. <i>Angewandte Chemie</i> , 2016 , 128, 5040	63 5 050	47
93	Elucidation of Adsorbate Structures and Interactions on Brfisted Acid Sites in H-ZSM-5 by Synchrotron X-ray Powder Diffraction. <i>Angewandte Chemie</i> , 2016 , 128, 6085-6088	3.6	12
92	A ruthenium water oxidation catalyst based on a carboxamide ligand. <i>Dalton Transactions</i> , 2016 , 45, 327	7 2. 6	16
91	Highly crystalline covalent organic frameworks from flexible building blocks. <i>Chemical Communications</i> , 2016 , 52, 4706-9	5.8	45
90	Hydrothermal assembly of various dimensional pure-inorganic copper holybdenum frameworks. <i>CrystEngComm</i> , 2016 , 18, 521-524	3.3	5
89	Pyrazolate-Based Porphyrinic Metal-Organic Framework with Extraordinary Base-Resistance. Journal of the American Chemical Society, 2016 , 138, 914-9	16.4	212
88	REktitelbild: Elucidation of Adsorbate Structures and Interactions on BrEsted Acid Sites in H-ZSM-5 by Synchrotron X-ray Powder Diffraction (Angew. Chem. 20/2016). <i>Angewandte Chemie</i> , 2016 , 128, 6214-6214	3.6	
87	Multiferroicity Broken by Commensurate Magnetic Ordering in Terbium Orthomanganite. <i>ChemPhysChem</i> , 2016 , 17, 1098-103	3.2	6
86	Undulated 2D Covalent Organic Frameworks Based on Bowl-Shaped Cyclotricatechylene. <i>Chinese Journal of Chemistry</i> , 2016 , 34, 783-787	4.9	9
85	Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4962-6	16.4	222
84	Adsorption Properties of MFM-400 and MFM-401 with CO2 and Hydrocarbons: Selectivity Derived from Directed Supramolecular Interactions. <i>Inorganic Chemistry</i> , 2016 , 55, 7219-28	5.1	36
83	InnenrEktitelbild: Self-Supporting Metal D rganic Layers as Single-Site Solid Catalysts (Angew. Chem. 16/2016). <i>Angewandte Chemie</i> , 2016 , 128, 5181-5181	3.6	
82	Structure modulations in nonlinear optical (NLO) materials Cs(2)TB4O9 (T = Ge, Si). <i>Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials</i> , 2016 , 72, 194-200	1.8	11
81	PKU-20: A new silicogermanate constructed from sti and asv layers. <i>Microporous and Mesoporous Materials</i> , 2016 , 224, 384-391	5.3	4

80	Accurate structure determination of a borosilicate zeolite EMM-26 with two-dimensional 10 🗓 0 ring channels using rotation electron diffraction. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1444-1448	6.8	23
79	Approaching the structure of REBaB9O16 (RE = rare earth) by characterization of a new analogue Ba6Bi9B79O138. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4431-4437	7.1	10
78	Catalytic water oxidation by a molecular ruthenium complex: unexpected generation of a single-site water oxidation catalyst. <i>Inorganic Chemistry</i> , 2015 , 54, 4611-20	5.1	35
77	Soluble Silver Acetylide for the Construction and Structural Conversion of All-Alkynyl-Stabilized High-Nuclearity Homoleptic Silver Clusters. <i>Crystal Growth and Design</i> , 2015 , 15, 2505-2513	3.5	17
76	A luminescent Zr-based metal®rganic framework for sensing/capture of nitrobenzene and high-pressure separation of CH4/C2H6. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23493-23500	13	20
75	Unusual Strong Incommensurate Modulation in a Tungsten-Bronze-Type Relaxor PbBiNb5O15. Journal of the American Chemical Society, 2015 , 137, 13468-71	16.4	30
74	A Crystalline Mesoporous Germanate with 48-Ring Channels for COISeparation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7290-4	16.4	24
73	Construct Polyoxometalate Frameworks through Covalent Bonds. <i>Inorganic Chemistry</i> , 2015 , 54, 8699-7	70;41	9
72	An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 21852-9	9.5	143
71	(Li0.84Fe0.16)OHFe0.98Se superconductor: Ion-exchange synthesis of large single-crystal and highly two-dimensional electron properties. <i>Physical Review B</i> , 2015 , 92,	3.3	89
70	Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. <i>ChemSusChem</i> , 2015 , 8, 3242-7	8.3	45
69	A Crystalline Mesoporous Germanate with 48-Ring Channels for CO2 Separation. <i>Angewandte Chemie</i> , 2015 , 127, 7398-7402	3.6	6
68	Monodisperse sandwich-like coupled quasi-graphene sheets encapsulating ni2 p nanoparticles for enhanced lithium-ion batteries. <i>Chemistry - A European Journal</i> , 2015 , 21, 9229-35	4.8	45
67	Alkene Epoxidation Catalysts [Ru(pdc)(tpy)] and [Ru(pdc)(pybox)] Revisited: Revealing a Unique RuIV?O Structure from a Dimethyl Sulfoxide Coordinating Complex. <i>ACS Catalysis</i> , 2015 , 5, 3966-3972	13.1	8
66	PKU-3: An HCl-Inclusive Aluminoborate for Strecker Reaction Solved by Combining RED and PXRD. Journal of the American Chemical Society, 2015 , 137, 7047-50	16.4	32
65	Fine-Tuning of Crystal Packing and Charge Transport Properties of BDOPV Derivatives through Fluorine Substitution. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15947-56	16.4	177
64	Construction of mesoporous frameworks with vanadoborate clusters. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3608-11	16.4	37
63	SU-79: a novel germanate with 3D 10- and 11-ring channels templated by a square-planar nickel complex. <i>Inorganic Chemistry Frontiers</i> , 2014 , 1, 278-283	6.8	4

62	A germanosilicate structure with 11🛭 1 🗗 2-ring channels solved by electron crystallography. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5868-71	16.4	58
61	Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host. <i>Chemical Communications</i> , 2014 , 50, 788-91	5.8	59
60	Layered V-B-O polyoxometalate nets linked by diethylenetriamine complexes with dangling amine groups. <i>Dalton Transactions</i> , 2014 , 43, 15283-6	4.3	12
59	EMM-23: a stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13570-3	16.4	51
58	A Germanosilicate Structure with 11¶1¶2-Ring Channels Solved by Electron Crystallography. <i>Angewandte Chemie</i> , 2014 , 126, 5978-5981	3.6	14
57	A 3D 12-ring zeolite with ordered 4-ring vacancies occupied by (H2O)2 dimers. <i>Chemistry - A European Journal</i> , 2014 , 20, 16097-101	4.8	16
56	Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2014 , 470, 20140107	2.4	5
55	Construction of Mesoporous Frameworks with Vanadoborate Clusters. <i>Angewandte Chemie</i> , 2014 , 126, 3682-3685	3.6	9
54	3D Open-Framework Vanadoborate as a Highly Effective Heterogeneous Pre-catalyst for the Oxidation of Alkylbenzenes. <i>Chemistry of Materials</i> , 2013 , 25, 5031-5036	9.6	51
53	Stepwise tuning of the substituent groups from mother BTB ligands to two hexaphenylbenzene based ligands for construction of diverse coordination polymers. <i>CrystEngComm</i> , 2013 , 15, 8511	3.3	8
52	A silicogermanate with 20-ring channels directed by a simple quaternary ammonium cation. <i>Dalton Transactions</i> , 2013 , 42, 1360-3	4.3	23
51	Three-dimensional rotation electron diffraction: software for automated data collection and data processing. <i>Journal of Applied Crystallography</i> , 2013 , 46, 1863-1873	3.8	208
50	Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4954-7	16.4	103
49	Germanate with three-dimensional 12 🛘 2 🖟 1-ring channels solved by X-ray powder diffraction with charge-flipping algorithm. <i>Inorganic Chemistry</i> , 2013 , 52, 10238-44	5.1	7
48	Disorder in Extra-Large Pore Zeolite ITQ-33 Revealed by Single Crystal XRD. <i>Crystal Growth and Design</i> , 2013 , 13, 4168-4171	3.5	11
47	Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3749	9- 5 45	83
46	A Tailor-Made Molecular Ruthenium Catalyst for the Oxidation of Water and Its Deactivation through Poisoning by Carbon Monoxide. <i>Angewandte Chemie</i> , 2013 , 125, 4283-4287	3.6	26
45	REktitelbild: A Tailor-Made Molecular Ruthenium Catalyst for the Oxidation of Water and Its Deactivation through Poisoning by Carbon Monoxide (Angew. Chem. 15/2013). <i>Angewandte Chemie</i> , 2013, 125, 4370-4370	3.6	

(2011-2013)

44	A Palladium/Chiral Amine Co-catalyzed Enantioselective Dynamic Cascade Reaction: Synthesis of Polysubstituted Carbocycles with a Quaternary Carbon Stereocenter. <i>Angewandte Chemie</i> , 2013 , 125, 6166-6170	3.6	22
43	SU-75: a disordered Ge10 germanate with pcu topology. <i>Dalton Transactions</i> , 2012 , 41, 12358-64	4.3	5
42	A novel 1D independent metal@rganic nanotube based on cyclotriveratrylene ligand. CrystEngComm, 2012 , 14, 112-115	3.3	28
41	Epitaxial growth of coreBhell zeolite XIA composites. CrystEngComm, 2012, 14, 2204	3.3	23
40	Three low-dimensional open-germanates based on the 44 net. CrystEngComm, 2012, 14, 5465	3.3	9
39	SU-62: Synthesis and Structure Investigation of a Germanate with a Novel Three-Dimensional Net and Interconnected 10- and 14-Ring Channels. <i>Crystal Growth and Design</i> , 2012 , 12, 369-375	3.5	12
38	The Structure of a Complex Open-Framework Germanate Obtained by Combining Powder Charge-Flipping and Simulated Annealing. <i>Crystal Growth and Design</i> , 2012 , 12, 4853-4860	3.5	10
37	Mullite-derivative Bi2Mn(x)Al(7-x)O14 (x~1): structure determination by powder X-ray diffraction from a multi-phase sample. <i>Dalton Transactions</i> , 2012 , 41, 2884-9	4.3	2
36	Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. <i>Nature Chemistry</i> , 2012 , 4, 887-94	17.6	396
35	Cyclotricatechylene based porous crystalline material: Synthesis and applications in gas storage. Journal of Materials Chemistry, 2012 , 22, 5369		114
34	Achiral Co-Catalyst Induced Switches in Catalytic Asymmetric Reactions on Racemic Mixtures (RRM): From Stereodivergent RRM to Stereoconvergent Deracemization by Combination of Hydrogen Bond Donating and Chiral Amine Catalysts. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 2865	5.6 -2872	14
33	Intergrown New Zeolite Beta Polymorphs with Interconnected 12-Ring Channels Solved by Combining Electron Crystallography and Single-Crystal X-ray Diffraction. <i>Chemistry of Materials</i> , 2012 , 24, 3701-3706	9.6	40
32	Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. <i>Nature Chemistry</i> , 2012 , 4, 188-94	17.6	151
31	One-Step Catalytic Enantioselective Quaternary 5-Hydroxyproline Synthesis: An Asymmetric Entry to Highly Functionalized Quaternary Proline Derivatives. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 1156-1162	5.6	14
30	Structure determination of [3Fe2S] complex with complicated pseudo-merohedric twinning. <i>Zeitschrift Fil Kristallographie</i> , 2012 , 227, 221-226		3
29	Two open-framework germanates with nickel complexes incorporated into the framework. <i>Inorganic Chemistry</i> , 2011 , 50, 9921-3	5.1	16
28	Investigation of the GeO2-1,6-diaminohexane-water-pyridine-HF phase diagram leading to the discovery of two novel layered germanates with extra-large rings. <i>Inorganic Chemistry</i> , 2011 , 50, 201-7	5.1	28
27	Synthesis of a [3Fe2S] Cluster with Low Redox Potential from [2Fe2S] Hydrogenase Models: Electrochemical and Photochemical Generation of Hydrogen. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 1100-1105	2.3	19

26	Photosensitized Water Oxidation by Use of a Bioinspired Manganese Catalyst. <i>Angewandte Chemie</i> , 2011 , 123, 11919-11922	3.6	83
25	Microporous Aluminoborates with Large Channels: Structural and Catalytic Properties. <i>Angewandte Chemie</i> , 2011 , 123, 12763-12766	3.6	10
24	Microporous aluminoborates with large channels: structural and catalytic properties. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 12555-8	16.4	65
23	One dimensional infinite water wires incorporated in isostructural organic crystalline supermolecules with zwitterionic channels. <i>CrystEngComm</i> , 2011 , 13, 1287-1290	3.3	9
22	Structure determination of the zeolite IM-5 using electron crystallography. <i>Zeitschrift F</i> [®] <i>Kristallographie</i> , 2010 , 225,		34
21	BiMnFe2O6, a polysynthetically twinned hcp MO structure. <i>Chemical Science</i> , 2010 , 1, 751	9.4	13
20	Structure determination of zeolites and ordered mesoporous materials by electron crystallography. <i>Dalton Transactions</i> , 2010 , 39, 8355-62	4.3	14
19	A complicated quasicrystal approximant epsilon16 predicted by the strong-reflections approach. <i>Acta Crystallographica Section B: Structural Science</i> , 2010 , 66, 17-26		12
18	Quantitative Electron Diffraction for Crystal Structure Determination. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1184, 31		
17	Rational Construction of 2D and 3D Borromean Arrayed Organic Crystals by Hydrogen-Bond-Directed Self-Assembly. <i>Angewandte Chemie</i> , 2009 , 121, 2917-2920	3.6	10
17 16		3.6 50.4	10 463
	Hydrogen-Bond-Directed Self-Assembly. <i>Angewandte Chemie</i> , 2009 , 121, 2917-2920		463
16	Hydrogen-Bond-Directed Self-Assembly. <i>Angewandte Chemie</i> , 2009 , 121, 2917-2920 The ITQ-37 mesoporous chiral zeolite. <i>Nature</i> , 2009 , 458, 1154-7 A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface.	50.4	463
16 15	Hydrogen-Bond-Directed Self-Assembly. <i>Angewandte Chemie</i> , 2009 , 121, 2917-2920 The ITQ-37 mesoporous chiral zeolite. <i>Nature</i> , 2009 , 458, 1154-7 A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. <i>Nature Chemistry</i> , 2009 , 1, 123-7 Open-framework germanate built from the hexagonal packing of rigid cylinders. <i>Inorganic</i>	50.4	463 120
16 15	Hydrogen-Bond-Directed Self-Assembly. <i>Angewandte Chemie</i> , 2009 , 121, 2917-2920 The ITQ-37 mesoporous chiral zeolite. <i>Nature</i> , 2009 , 458, 1154-7 A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. <i>Nature Chemistry</i> , 2009 , 1, 123-7 Open-framework germanate built from the hexagonal packing of rigid cylinders. <i>Inorganic Chemistry</i> , 2009 , 48, 9962-4 Construction of 3-fold interpenetrated pcu organic frameworks from methanetetrabenzoic acid	50.4 17.6 5.1	463 120 22
16 15 14	Hydrogen-Bond-Directed Self-Assembly. <i>Angewandte Chemie</i> , 2009 , 121, 2917-2920 The ITQ-37 mesoporous chiral zeolite. <i>Nature</i> , 2009 , 458, 1154-7 A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. <i>Nature Chemistry</i> , 2009 , 1, 123-7 Open-framework germanate built from the hexagonal packing of rigid cylinders. <i>Inorganic Chemistry</i> , 2009 , 48, 9962-4 Construction of 3-fold interpenetrated pcu organic frameworks from methanetetrabenzoic acid with zigzag bipyridines. <i>CrystEngComm</i> , 2009 , 11, 2277 Organic hydrogen-bonded interpenetrating diamondoid frameworks from modular self-assembly	50.4 17.6 5.1 3.3	463 120 22 12
16 15 14 13	Hydrogen-Bond-Directed Self-Assembly. <i>Angewandte Chemie</i> , 2009 , 121, 2917-2920 The ITQ-37 mesoporous chiral zeolite. <i>Nature</i> , 2009 , 458, 1154-7 A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. <i>Nature Chemistry</i> , 2009 , 1, 123-7 Open-framework germanate built from the hexagonal packing of rigid cylinders. <i>Inorganic Chemistry</i> , 2009 , 48, 9962-4 Construction of 3-fold interpenetrated pcu organic frameworks from methanetetrabenzoic acid with zigzag bipyridines. <i>CrystEngComm</i> , 2009 , 11, 2277 Organic hydrogen-bonded interpenetrating diamondoid frameworks from modular self-assembly of methanetetrabenzoic acid with linkers. <i>CrystEngComm</i> , 2009 , 11, 978 A zeolite family with chiral and achiral structures built from the same building layer. <i>Nature</i>	50.4 17.6 5.1 3.3	463 120 22 12 96

LIST OF PUBLICATIONS

8	Organocatalytic Highly Enantioselective Conjugate Addition of Aldehydes to Alkylidine Malonates. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 657-661	5.6	45	
7	A Germanate Built from a 68126 Cavity Cotemplated by an (H2O)16 Cluster and 2-Methylpiperazine. <i>Angewandte Chemie</i> , 2008 , 120, 7986-7989	3.6	6	
6	Pd(0.213)Cd(0.787) and Pd(0.235)Cd(0.765) structures: their long c axis and composite crystals, chemical twinning, and atomic site preferences. <i>Chemistry - A European Journal</i> , 2007 , 13, 1394-410	4.8	31	
5	Four-dimensional space groups for pedestrians: composite structures. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 1204-29	4.5	21	
4	New barium cobaltite series $Ba(n+1)Co(n)O(3n+3)(Co8O8)$: intergrowth structure containing perovskite and CdI2-type layers. <i>Inorganic Chemistry</i> , 2006 , 45, 9151-3	5.1	43	
3	Crystal growth and structure determination of oxygen-deficient Sr6Co5O15. <i>Inorganic Chemistry</i> , 2006 , 45, 8394-402	5.1	26	
2	Phase Equilibrium of the In2O3IIiO2IMO (M = Ca, Sr) Systems and the Structure of In6Ti6CaO22. <i>Chemistry of Materials</i> , 2005 , 17, 2186-2192	9.6	10	
1	Volcanic relationship between wettability of the interface and water migration rate in solar steam generation systems. <i>Nano Research</i> ,1	10	1	