John Paul Rathjen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9131651/publications.pdf

Version: 2024-02-01

73 papers

10,652 citations

42 h-index 73 g-index

95 all docs 95
docs citations

95 times ranked 10114 citing authors

#	Article	IF	CITATIONS
1	A Chromosome Scale Assembly of an Australian <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Isolate of the <i>PstS1</i> Lineage. Molecular Plant-Microbe Interactions, 2022, 35, 293-296.	1.4	12
2	Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data. Genome Biology, 2022, 23, 84.	3.8	31
3	Inferring Species Compositions of Complex Fungal Communities from Long- and Short-Read Sequence Data. MBio, 2022, 13, e0244421.	1.8	2
4	Plant pathology: Precision genome engineering keeps wheat disease at bay. Current Biology, 2022, 32, R382-R384.	1.8	1
5	A new method to visualize CEP hormone–CEP receptor interactions in vascular tissue <i>in vivo</i> . Journal of Experimental Botany, 2021, 72, 6164-6174.	2.4	7
6	Long-read sequencing based clinical metagenomics for the detection and confirmation of Pneumocystis jirovecii directly from clinical specimens: A paradigm shift in mycological diagnostics. Medical Mycology, 2020, 58, 650-660.	0.3	28
7	Blurred lines: integrating emerging technologies to advance plant biosecurity. Current Opinion in Plant Biology, 2020, 56, 127-134.	3.5	7
8	Distinct Life Histories Impact Dikaryotic Genome Evolution in the Rust Fungus Puccinia striiformis Causing Stripe Rust in Wheat. Genome Biology and Evolution, 2020, 12, 597-617.	1.1	34
9	PlantÂNLRÂimmune receptor Tm-22Âactivation requires NB-ARCÂdomain-mediated self-association of CC domain. PLoS Pathogens, 2020, 16, e1008475.	2.1	44
10	Harnessing the MinION: An example of how to establish longâ€read sequencing in a laboratory using challenging plant tissue from ⟨i⟩Eucalyptus pauciflora⟨/i⟩. Molecular Ecology Resources, 2019, 19, 77-89.	2.2	53
11	NAD ⁺ cleavage activity by animal and plant TIR domains in cell death pathways. Science, 2019, 365, 793-799.	6.0	357
12	Pathogen Detection and Microbiome Analysis of Infected Wheat Using a Portable DNA Sequencer. Phytobiomes Journal, 2019, 3, 92-101.	1.4	33
13	A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Reveals High Interhaplotype Diversity. MBio, 2018, 9, .	1.8	112
14	<i>De Novo</i> Assembly and Phasing of Dikaryotic Genomes from Two Isolates of <i>Puccinia coronata</i> f. sp. <i>avenae</i> , the Causal Agent of Oat Crown Rust. MBio, 2018, 9, .	1.8	57
15	Development of a Rapid in planta BioID System as a Probe for Plasma Membrane-Associated Immunity Proteins. Frontiers in Plant Science, 2018, 9, 1882.	1.7	42
16	Differential Suppression of Nicotiana benthamiana Innate Immune Responses by Transiently Expressed Pseudomonas syringae Type III Effectors. Frontiers in Plant Science, 2018, 9, 688.	1.7	21
17	Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Molecular Plant Pathology, 2017, 18, 811-824.	2.0	95
18	Dancing with the Stars: An Asterid NLR Family. Trends in Plant Science, 2017, 22, 1003-1005.	4.3	4

#	Article	IF	Citations
19	Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing. Methods in Molecular Biology, 2017, 1659, 49-57.	0.4	36
20	Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi. Methods in Molecular Biology, 2017, 1659, 125-134.	0.4	15
21	A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. ELife, 2017, 6, .	2.8	132
22	High levels of cyclicâ€diâ€∢scp>GMP in plantâ€associated <scp><i>P</i></scp> <i>seudomonas</i> correlate with evasion of plant immunity. Molecular Plant Pathology, 2016, 17, 521-531.	2.0	42
23	NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in <i>Nicotiana benthamiana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3389-3394.	3.3	85
24	The N-Terminal Domain of the Tomato Immune Protein Prf Contains Multiple Homotypic and Pto Kinase Interaction Sites. Journal of Biological Chemistry, 2015, 290, 11258-11267.	1.6	34
25	Changing SERKs and priorities during plant life. Trends in Plant Science, 2015, 20, 531-533.	4.3	13
26	The Ins and Outs of Rust Haustoria. PLoS Pathogens, 2014, 10, e1004329.	2.1	90
27	The <i><scp>P</scp>seudomonas</i> type <scp>III</scp> effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytologist, 2014, 201, 585-598.	3.5	99
28	Identification of Post-translational Modifications of Plant Protein Complexes. Journal of Visualized Experiments, 2014, , e51095.	0.2	5
29	The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLoS Biology, 2014, 12, e1001792.	2.6	223
30	The Calcium-Dependent Protein Kinase CPK28 Buffers Plant Immunity and Regulates BIK1 Turnover. Cell Host and Microbe, 2014, 16, 605-615.	5.1	208
31	The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Current Opinion in Plant Biology, 2014, 20, 69-74.	3.5	68
32	Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Frontiers in Plant Science, 2014, 5, 759.	1.7	98
33	Purification of Fungal Haustoria from Infected Plant Tissue by Flow Cytometry. Methods in Molecular Biology, 2014, 1127, 103-110.	0.4	2
34	<i>Pseudomonas fluorescens</i> NZI7 repels grazing by <i>C. elegans</i> , a natural predator. ISME Journal, 2013, 7, 1126-1138.	4.4	34
35	The Tomato Prf Complex Is a Molecular Trap for Bacterial Effectors Based on Pto Transphosphorylation. PLoS Pathogens, 2013, 9, e1003123.	2.1	49
36	Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing. PLoS ONE, 2013, 8, e67150.	1.1	110

#	Article	IF	Citations
37	ASPARTATE OXIDASE Plays an Important Role in Arabidopsis Stomatal Immunity Â. Plant Physiology, 2012, 159, 1845-1856.	2.3	129
38	Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 303-308.	3.3	303
39	The Receptor-Like Kinase SERK3/BAK1 Is Required for Basal Resistance against the Late Blight Pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE, 2011, 6, e16608.	1.1	170
40	Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytologist, 2011, 191, 376-390.	3.5	110
41	Hierarchy and Roles of Pathogen-Associated Molecular Pattern-Induced Responses in <i>Nicotiana benthamiana</i> Â Â. Plant Physiology, 2011, 156, 687-699.	2.3	185
42	The long and winding road: virulence effector proteins of plant pathogenic bacteria. Cellular and Molecular Life Sciences, 2010, 67, 3425-3434.	2.4	23
43	Bacterial virulence effectors and their activities. Current Opinion in Plant Biology, 2010, 13, 388-393.	3.5	79
44	The case for the defense: plants versus Pseudomonas syringae. Microbes and Infection, 2010, 12, 428-437.	1.0	35
45	Prf immune complexes of tomato are oligomeric and contain multiple Ptoâ€like kinases that diversify effector recognition. Plant Journal, 2010, 61, 507-518.	2.8	116
46	Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 2010, 11, 539-548.	7.7	2,790
47	Pathogen effectors shed light on plant diseases. Functional Plant Biology, 2010, 37, iii.	1.1	1
48	Direct transcriptional control of the <i>Arabidopsis</i> immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14502-14507.	3.3	218
49	Deciphering the mode of action and host recognition of bacterial type III effectors. Functional Plant Biology, 2010, 37, 926.	1.1	3
50	Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection. Science, 2009, 324, 784-787.	6.0	120
51	The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signaling and Behavior, 2009, 4, 539-541.	1.2	92
52	Effector Proteins of the Bacterial Pathogen Pseudomonas syringae Alter the Extracellular Proteome of the Host Plant, Arabidopsis thaliana. Molecular and Cellular Proteomics, 2009, 8, 145-156.	2.5	107
53	A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528. BMC Genomics, 2009, 10, 395.	1.2	81
54	AvrPtoB Targets the LysM Receptor Kinase CERK1 to Promote Bacterial Virulence on Plants. Current Biology, 2009, 19, 423-429.	1.8	419

#	Article	IF	Citations
55	Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. Journal of Proteomics, 2009, 72, 439-451.	1.2	84
56	Regulation of Tomato Prf by Pto-like Protein Kinases. Molecular Plant-Microbe Interactions, 2009, 22, 391-401.	1.4	45
57	Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of <i>Arabidopsis thaliana</i> . Proteomics, 2008, 8, 3536-3547.	1.3	103
58	Plant Immunity: AvrPto Targets the Frontline. Current Biology, 2008, 18, R218-R220.	1.8	48
59	The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12217-12222.	3.3	998
60	Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant Journal, 2007, 49, 607-618.	2.8	185
61	Genetic and molecular requirements for function of the Pto/Prf effector recognition complex in tomato and <i>Nicotiana benthamiana</i> . Plant Journal, 2007, 51, 978-990.	2.8	43
62	TomatoPtoencodes a functionalN-myristoylation motif that is required for signal transduction inNicotiana benthamiana. Plant Journal, 2006, 45, 31-45.	2.8	55
63	The Tomato NBARC-LRR Protein Prf Interacts with Pto Kinase in Vivo to Regulate Specific Plant Immunity. Plant Cell, 2006, 18, 2792-2806.	3.1	239
64	The Pto Kinase of Tomato, Which Regulates Plant Immunity, Is Repressed by Its Myristoylated N Terminus. Journal of Biological Chemistry, 2006, 281, 26578-26586.	1.6	16
65	A Patch of Surface-Exposed Residues Mediates Negative Regulation of Immune Signaling by Tomato Pto Kinase[W]. Plant Cell, 2004, 16, 2809-2821.	3.1	77
66	High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO Journal, 2003, 22, 5690-5699.	3.5	493
67	Early signal transduction events in specific plant disease resistance. Current Opinion in Plant Biology, 2003, 6, 300-306.	3.5	52
68	avrPto Enhances Growth and Necrosis Caused by Pseudomonas syringae pv. tomato in Tomato Lines Lacking Either Pto or Prf. Molecular Plant-Microbe Interactions, 2000, 13, 568-571.	1.4	81
69	Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto. EMBO Journal, 1999, 18, 3232-3240.	3.5	140
70	Title is missing!. Molecular Breeding, 1998, 4, 23-31.	1.0	41
71	Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science, 1996, 274, 2063-2065.	6.0	532
72	Efficient infection from cDNA clones of cucumber mosaic cucumovirus RNAs in a new plasmid vector. Journal of General Virology, 1995, 76, 459-464.	1.3	56

#	Article	IF	CITATIONS
73	Soybean Dwarf Luteovirus Contains the Third Variant Genome Type in the Luteovirus Group. Virology, 1994, 198, 671-679.	1.1	71