Luca Oberto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9131285/publications.pdf

Version: 2024-02-01

933447 996975 40 265 10 15 citations h-index g-index papers 40 40 40 196 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Development of Quantum Limited Superconducting Amplifiers for Advanced Detection. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	7
2	Bimodal Approach for Noise Figures of Merit Evaluation in Quantum-Limited Josephson Traveling Wave Parametric Amplifiers. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6.	1.7	8
3	Development of a Josephson junction based single photon microwave detector for axion detection experiments. Journal of Physics: Conference Series, 2020, 1559, 012020.	0.4	10
4	Status of the SIMP Project: Toward the Single Microwave Photon Detection. Journal of Low Temperature Physics, 2020, 199, 348-354.	1.4	23
5	Identification of RF&MW Microcalorimeter Weak Points by Means of Uncertainty Analysis. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 1948-1954.	4.7	1
6	Uncertainty Evaluation for the INRIM Microcalorimeter., 2018,,.		1
7	RF/MW Power Standard Realization Without Unitary Efficiency Assumption at DC/LF. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 925-929.	4.7	3
8	Measurement comparison among time-domain, FTIR and VNA-based spectrometers in the THz frequency range. Metrologia, 2017, 54, 77-84.	1.2	18
9	Uncertainty analysis for material measurements using the vector network analyzer. Microwave and Optical Technology Letters, 2016, 58, 1841-1844.	1.4	4
10	Connection repeatability of waveguide verification standards for VNA system., 2016,,.		1
11	On the Influence of Delay Line Uncertainty in THz Time-Domain Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 605-613.	2.2	30
12	Material measurements using the vector network analyzer. , 2016, , .		2
13	Improvements on INRIM Coaxial Microcalorimeter and Outcome of a Model Comparison. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 1472-1476.	4.7	3
14	Improvements on INRIM coaxial microcalorimeter., 2014,,.		1
15	Comparison of S-Parameter Measurements at Millimeter Wavelengths Between INRIM and NMC. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 1810-1817.	4.7	12
16	Phase comparison between NMC and INRIM on scattering parameter measurements with WR15 and WR10 connections. , 2014, , .		1
17	Set-up of a THz Time Domain Spectrometer at INRIM. , 2014, , .		О
18	Error propagation with different VNA calibration techniques at millimeter frequencies. , 2013, , .		2

#	Article	IF	Citations
19	Comparison Between Thermoelectric and Bolometric Microwave Power Standards. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 1710-1715.	4.7	13
20	Thermoelectric against bolometric microwave power standard. , 2012, , .		2
21	Scattering parameter measurement comparison between NMC and INRIM on Vector Network Analyzer using WR15 and WR10 connectors. , 2012, , .		2
22	Realization and dissemination of high frequency power standard at INRIM. Measurement: Journal of the International Measurement Confederation, 2012, 45, 290-296.	5.0	1
23	High frequency comparison with thermoelectric power sensors between INRIM and NMC. Measurement: Journal of the International Measurement Confederation, 2012, 45, 1180-1187.	5.0	2
24	Power Sensor Calibration by Implementing True-Twin Microcalorimeter. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 2335-2340.	4.7	8
25	Latest determination of a coaxial microcalorimeter calibration factor. Measurement Science and Technology, 2011, 22, 025101.	2.6	11
26	True-twin microcalorimeter: proof-of-concept experiment. Electronics Letters, 2011, 47, 550.	1.0	3
27	Realization and Preliminary Measurements on a 94 GHz SIS Mixer. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31, 1331-1337.	2.2	1
28	Bridging RF-voltage to coaxial power standard in the 100 MHz range. , 2010, , .		1
29	Bilateral comparison between NMC and INRIM on microwave power sensor using type N and 3.5 mm connectors. , 2010 , , .		4
30	Analysis methods of coaxial microcalorimeter data. , 2010, , .		0
31	Uncertainty evaluation for the estimate of a complex-valued quantity modulus. Metrologia, 2010, 47, 157-166.	1.2	5
32	Comparison Among Coaxial Microcalorimeter Models. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 1141-1145.	4.7	17
33	Alternative procedures in realizing of the high frequency power standards with microcalorimeter and thermoelectric power sensors. Measurement: Journal of the International Measurement Confederation, 2009, 42, 269-276.	5.0	11
34	Establishing reference value in high frequency power comparisons. Measurement: Journal of the International Measurement Confederation, 2009, 42, 1318-1323.	5.0	4
35	Improvement of primary power standard through international comparison feedback. Measurement: Journal of the International Measurement Confederation, 2009, 42, 1487-1490.	5.0	1
36	Accuracy comparison among different mathematical models of coaxial microcalorimeter., 2008,,.		1

Luca Oberto

#	Article	IF	CITATIONS
37	Improving the primary power standard below 10 MHz with thermoelectric sensors. , 2008, , .		0
38	On coaxial microcalorimeter calibration. EPJ Applied Physics, 2008, 43, 239-244.	0.7	12
39	Thermoelectric Sensors as Microcalorimeter Load. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 2220-2224.	4.7	27
40	Estimation of the modulus of a complex-valued quantity. Metrologia, 2006, 43, 531-538.	1.2	12