Robert P Socha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9130895/publications.pdf

Version: 2024-02-01

117453 4,663 139 34 citations h-index papers

g-index 142 142 142 6710 docs citations times ranked citing authors all docs

114278

63

#	Article	IF	CITATIONS
1	Zero waste, single step methods of fabrication of reduced graphene oxide decorated with gold nanoparticles. Sustainable Materials and Technologies, 2022, 31, e00387.	1.7	1
2	Double substituted NdBa(Fe,Co,Cu)2O5+l̂′layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells – correlation between structure and electrochemical properties. Electrochimica Acta, 2022, 411, 140062.	2.6	7
3	Influence of Conditioning Temperature on Defects in the Double Al2O3/ZnO Layer Deposited by the ALD Method. Materials, 2021, 14, 1038.	1.3	3
4	Colourful thin passive films on a Zn-Co alloy formed by anodic oxidation. Electrochimica Acta, 2021, 373, 137922.	2.6	6
5	The influence of dielectric permittivity of water on the shape of PtNPs synthesized in high-pressure high-temperature microwave reactor. Scientific Reports, 2021, 11, 4851.	1.6	9
6	The Impacts of Crystalline Structure and Different Surface Functional Groups on Drug Release and the Osseointegration Process of Nanostructured TiO2. Molecules, 2021, 26, 1723.	1.7	3
7	Structural and electrochemical characterization of YBa(Fe,Co,Cu)2O5+δlayered perovskites as cathode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 16977-16988.	3.8	13
8	Silicon solar cells and modules with front contact paste containing copperâ€based component. Progress in Photovoltaics: Research and Applications, 2021, 29, 1008-1019.	4.4	6
9	Damage Development on the Surface of Nickel Coating in the Initial Period of Erosion. Materials, 2021, 14, 3123.	1.3	4
10	Poly-5-aminoindole and graphene-like materials derived bifunctional Co–N-C electrocatalysts for oxygen reduction and hydrogen evolution. Journal of Solid State Electrochemistry, 2021, 25, 2309-2319.	1.2	4
11	Investigation of Dye Dopant Influence on Electrooptical and Morphology Properties of Polymeric Acceptor Matrix Dedicated for Ternary Organic Solar Cells. Polymers, 2021, 13, 4099.	2.0	2
12	Batch reactor vs. flow column – Mechanistic investigation and modeling of Au(III) ions adsorption from aqueous solutions containing Ni2+, Na+, Clâ⁻¹ and ClO4â⁻¹ as impurities. Sustainable Materials and Technologies, 2020, 23, e00142.	1.7	3
13	Copper Oxides on a Cu Sheet Substrate Made by Laser Technique. Materials, 2020, 13, 3794.	1.3	1
14	Nanoporous Anodic Aluminum-Iron Oxide with a Tunable Band Gap Formed on the FeAl3 Intermetallic Phase. Materials, 2020, 13, 3471.	1.3	3
15	Physicochemical and Biological Characterisation of Diclofenac Oligomeric Poly(3-hydroxyoctanoate) Hybrids as \hat{l}^2 -TCP Ceramics Modifiers for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 9452.	1.8	11
16	Effect of grinding on the physico-chemical properties of Mg-Al hydrotalcite and its performance as a catalyst for Baeyer-Villiger oxidation of cyclohexanone. Catalysis Today, 2019, 333, 147-153.	2.2	17
17	Improvement of corrosion resistance of Zn-Ni alloy coatings by anodizing in selected alcoholic solutions. Corrosion Science, 2019, 158, 108107.	3.0	15
18	Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation. Materials Science and Engineering C, 2019, 104, 109957.	3.8	17

#	Article	IF	CITATIONS
19	Sorption of Molybdates and Tungstates on Functionalized Montmorillonites: Structural and Textural Features. Materials, 2019, 12, 2253.	1.3	13
20	A Precursor Approach for the Development of Lace-like Fe ₂ O ₃ Nanocrystallites Triggered by Pressure Dependent Nucleation and Growth of Akaganeite over Clay Based Composites for Toluene Combustion. Journal of Physical Chemistry C, 2019, 123, 26236-26250.	1.5	9
21	Morphology of nanoporous anodic films formed on tin during anodic oxidation in less commonly used acidic and alkaline electrolytes. Surface and Coatings Technology, 2019, 362, 191-199.	2.2	22
22	Flexible and ultrathin polyelectrolyte conductive coatings formed with reduced graphene oxide as a base for advanced new materials. Applied Surface Science, 2019, 484, 501-510.	3.1	9
23	Electrochemical synthesis and characterization of dark nanoporous zinc oxide films. Electrochimica Acta, 2019, 305, 349-359.	2.6	39
24	Solvent and substituent effects in hydrogenation of aromatic ketones over Ru/polymer catalyst under very mild conditions. Molecular Catalysis, 2019, 470, 145-151.	1.0	12
25	Application of metallic inks based on nickel-silver core–shell nanoparticles for fabrication of conductive films. Nanotechnology, 2019, 30, 225301.	1.3	17
26	Ba0.95Ca0.05Ce0.9Y0.1O3 as an electrolyte for proton-conducting ceramic fuel cells. Electrochimica Acta, 2019, 304, 70-79.	2.6	16
27	Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 2019, 275, 69-76.	4.2	85
28	The kinetic studies of gold(III) chloride complex adsorption mechanism from an aqueous and semi-aqueous system. Journal of Molecular Liquids, 2019, 278, 43-52.	2.3	10
29	The optimization of methods of synthesis of nickel–silver core–shell nanoparticles for conductive materials. Nanotechnology, 2019, 30, 015601.	1.3	12
30	VOCs combustion catalysts based on composites of exfoliated organo-Laponite and multimetallic (Mn,) Tj ETQq	0 0 0 rgBT 2.2	Overlock 10
31	Palladium(II) Chloride Complex Ion Recovery from Aqueous Solutions Using Adsorption on Activated Carbon. Journal of Chemical &	1.0	45
32	New insight into the preferred valency of interlayer anions in hydrotalcite-like compounds: The effect of Mg/Al ratio. Applied Clay Science, 2018, 155, 84-94.	2.6	33
33	Sn-BEA zeolites prepared by two-step postsynthesis method: Physicochemical properties and catalytic activity in processes based on MPV reduction. Microporous and Mesoporous Materials, 2018, 268, 178-188.	2.2	19
34	Extended investigation of sol aging effect on TiO2 electron transporting layer and performances of perovskite solar cells. Materials Research Bulletin, 2018, 99, 136-143.	2.7	13
35	Copper-Based Volumetric Filler Dedicated for Ag Paste for Depositing the Front Electrodes by Printing on Solar Si Cells. Materials, 2018, 11, 2493.	1.3	3
36	Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs. Journal of Nanoparticle Research, 2018, 20, 144.	0.8	22

#	Article	IF	Citations
37	Physicochemical and electrochemical properties of the carbon materials containing nitrogen and cobalt derived from acetonitrile and Co–Al layered double hydroxides. Journal of Materials Science, 2018, 53, 11292-11314.	1.7	9
38	Formation of Nanodimensional Layer of Catalytically Active Metals on Stainless Steel Surface by Ionic Implantation. Theoretical and Experimental Chemistry, 2018, 54, 128-137.	0.2	6
39	Surface modification of nanoporous anodic titanium dioxide layers for drug delivery systems and enhanced SAOS-2 cell response. Colloids and Surfaces B: Biointerfaces, 2018, 171, 58-66.	2.5	23
40	Investigation of the Microstructure and Chemical Composition of CaCu3Ti4O12 Multilayer Elements using SEM, EDS, and XPS. Acta Physica Polonica A, 2018, 134, 318-321.	0.2	2
41	Composites derived from exfoliated Laponite and Mn-Al hydrotalcite prepared in inverse microemulsion: A new strategy for design of robust VOCs combustion catalysts. Applied Catalysis B: Environmental, 2017, 211, 46-56.	10.8	38
42	Platinum(IV) Chloride Complex Ions Adsorption on Activated Carbon Organosorb 10CO. Australian Journal of Chemistry, 2017, 70, 769.	0.5	2
43	The nucleation, growth and thermal stability of iron clusters on a TiO 2 (110) surface. Applied Surface Science, 2017, 416, 144-151.	3.1	5
44	Chaotic variations of electrical conductance in powdered Pd correlating with oscillatory sorption of D ₂ . Physical Chemistry Chemical Physics, 2017, 19, 7040-7053.	1.3	1
45	Amperometric glucose sensor based on the Ni(OH) 2 /Al(OH) 4 â^ electrode obtained from a thin Ni 3 Al foil. Applied Surface Science, 2017, 408, 96-102.	3.1	13
46	Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies. Materials Chemistry and Physics, 2017, 195, 28-39.	2.0	18
47	Kinetic studies of the removal of Pt(IV) chloride complex ions from acidic aqueous solutions using activated carbon. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 715-734.	0.8	7
48	Antioxidant activity and the most abundant phenolics in commercial dark beers. International Journal of Food Properties, 2017, 20, S595-S609.	1.3	26
49	Controlled synthesis of nanoporous tin oxide layers with various pore diameters and their photoelectrochemical properties. Electrochimica Acta, 2017, 254, 238-245.	2.6	26
50	Influence of Ag nanoparticles microstructure on their optical and plasmonic properties for photovoltaic applications. Solar Energy, 2017, 158, 610-616.	2.9	9
51	Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron. Applied Surface Science, 2017, 426, 1084-1093.	3.1	32
52	The influence of Desulfovibrio desulfuricans bacteria on a Ni-Ti alloy: electrochemical behavior and surface analysis. Electrochimica Acta, 2017, 249, 135-144.	2.6	11
53	Microstructural and compositional studies on multilayer elements based on low temperature cofired CaCu <inf>3</inf> Ti <inf>4</inf> O <inf>12</inf> -type ceramics., 2017,,.		0
54	Antioxidant properties of apple slices stored in starch-based films. International Journal of Food Properties, 2017, 20, 1117-1128.	1.3	16

#	Article	IF	CITATIONS
55	Studying of Perovskite Nanoparticles in PMMA Matrix Used As Light Converter for Silicon Solar Cell. Archives of Metallurgy and Materials, 2017, 62, 1733-1739.	0.6	4
56	Structural, Catalytic, and Thermal Properties of Stainless Steel with Nanoscale Metal Surface Layer. Springer Proceedings in Physics, 2017, , 355-364.	0.1	11
57	The New Copper Composite of Pastes for Si Solar Cells Front Electrode Application. Energy Procedia, 2016, 92, 962-970.	1.8	12
58	Efficient and Versatile Ru/SBAâ€15 Catalysts for Liquidâ€Phase Hydrogenation of the C=C and C=O Bonds under Mild Conditions. ChemistrySelect, 2016, 1, 2148-2155.	0.7	8
59	X-ray photoelectron spectroscopic and electrochemical impedance spectroscopic analysis of RuO2-Ta2O5 thick film pH sensors. Analytica Chimica Acta, 2016, 931, 47-56.	2.6	27
60	A comparative study of direct versus post-synthesis alumination of mesoporous FSM-16 silica. Materials Research Bulletin, 2016, 83, 623-631.	2.7	13
61	The effect of sulphate-reducing bacteria biofilm on passivity and development of pitting on 2205 duplex stainless steel. Electrochimica Acta, 2016, 212, 225-236.	2.6	48
62	Nitrogen-doped carbon materials derived from acetonitrile and Mg-Co-Al layered double hydroxides as electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 2016, 212, 47-58.	2.6	13
63	Alteration of the structure and surface composition of crystalline-amorphous porous clay heterostructures upon iron doping from metal-organic source. Surface and Interface Analysis, 2016, 48, 527-531.	0.8	5
64	Electrochemically deposited nanocrystalline InSb thin films and their electrical properties. Journal of Materials Chemistry C, 2016, 4, 1345-1350.	2.7	23
65	Kinetic Studies of Gold Recovery from Diluted Chloride Aqueous Solutions Using Activated Carbon Organosorb 10 CO. Australian Journal of Chemistry, 2016, 69, 254.	0.5	16
66	Nature of the active sites in CO oxidation on FeSiBEA zeolites. Applied Catalysis A: General, 2016, 519, 16-26.	2.2	18
67	Magnesium and/or calcium-containing natural minerals as ecologically friendly catalysts for the Baeyer–Villiger oxidation of cyclohexanone with hydrogen peroxide. Applied Catalysis A: General, 2016, 509, 52-65.	2.2	23
68	Prospects of Xâ€ray photoemission electron microscopy at the first beamline of the Polish synchrotron facility â€~Solaris'. X-Ray Spectrometry, 2015, 44, 317-322.	0.9	7
69	Copper deposition on screen printed electrical paths for solar cell application. Circuit World, 2015, 41, 98-101.	0.7	6
70	Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 128, 17-22.	2.5	203
71	Characterization of Polish Wines Produced from the Multispecies Hybrid and <i>Vitis vinifera </i> L. Grapes. International Journal of Food Properties, 2015, 18, 699-713.	1.3	21
72	Kinetic studies of sorption and reduction of gold(III) chloride complex ions on activated carbon Norit ROX 0.8. Journal of Industrial and Engineering Chemistry, 2015, 29, 289-297.	2.9	26

#	Article	IF	Citations
73	Tuning the polarity of charge transport in InSb nanowires via heat treatment. Nanotechnology, 2015, 26, 285701.	1.3	14
74	Phenolic Profile and Antioxidant Activity of Polish Meads. International Journal of Food Properties, 2015, 18, 2713-2725.	1.3	19
75	Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr- or [Ti,Zr]-pillared montmorillonites for destruction of chlorinated volatile organic compounds. Applied Catalysis B: Environmental, 2015, 174-175, 293-307.	10.8	49
76	Self-healing epoxy coatings loaded with inhibitor-containing polyelectrolyte nanocapsules. Progress in Organic Coatings, 2015, 84, 97-106.	1.9	79
77	Photochemical silver nanoparticles deposition on sol–gel TiO2 for plasmonic properties utilization. Journal of Sol-Gel Science and Technology, 2015, 73, 563-571.	1.1	6
78	[Ti,Zr]-pillared montmorillonite \hat{a} €" A new quality with respect to Ti- and Zr-pillared clays. Microporous and Mesoporous Materials, 2015, 202, 155-164.	2.2	43
79	The influence of layered double hydroxide composition on the morphology, porosity and capacitive properties of nitrogen-doped carbon materials prepared via chemical vapor deposition. Microporous and Mesoporous Materials, 2015, 201, 1-9.	2.2	9
80	Photocatalytic activity of titanium dioxide modified by Fe2O3 nanoparticles. Applied Surface Science, 2014, 319, 173-180.	3.1	40
81	Composition and Microstructure of the Al-Multilayer Graphene Composites Achieved by the Intensive Deformation. Acta Physica Polonica A, 2014, 126, 921-927.	0.2	5
82	Cu/Mn-based mixed oxides derived from hydrotalcite-like precursors as catalysts for methane combustion. Applied Catalysis A: General, 2014, 474, 87-94.	2.2	36
83	Epitaxial α-Mn(001) films on MgO(001). Thin Solid Films, 2014, 556, 137-141.	0.8	2
84	Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions. Journal of Solid State Electrochemistry, 2014, 18, 3129-3142.	1.2	53
85	Influence of ZrO ₂ Structure and Copper Electronic State on Activity of Cu/ZrO ₂ Catalysts in Methanol Synthesis from CO ₂ . ACS Catalysis, 2014, 4, 3730-3741.	5.5	294
86	Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements. Sensors and Actuators B: Chemical, 2014, 204, 57-67.	4.0	79
87	Characterization of casein and poly-l-arginine multilayer films. Journal of Colloid and Interface Science, 2014, 423, 76-84.	5.0	24
88	Use of ash-free "Hyper-coal―as a fuel for a direct carbon fuel cell with solid oxide electrolyte. International Journal of Hydrogen Energy, 2014, 39, 12386-12394.	3.8	53
89	Electrodeposition of thin metallic layer for solar cell electrodes. Soldering and Surface Mount Technology, 2014, 26, 18-21.	0.9	9
90	Determination of free radicals and flavan-3-ols content in fermented and unfermented teas and properties of their infusions. European Food Research and Technology, 2013, 237, 167-177.	1.6	10

#	Article	IF	Citations
91	Antireflection TiO x Coating with Plasmonic Metal Nanoparticles for Silicon Solar Cells. Plasmonics, 2013, 8, 41-43.	1.8	11
92	Preparation and characterization of the electroactive composites containing nickel nanoparticles and carbon nanotubes. Electrochimica Acta, 2013, 90, 563-572.	2.6	13
93	Investigation of electrochemical co-deposition of zinc and molybdenum from citrate solutions. Electrochimica Acta, 2013, 104, 378-390.	2.6	35
94	Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochimica Acta, 2013, 114, 627-636.	2.6	60
95	Anodic oxidation of Ti–13Nb–13Zr alloy in silicate solutions. Applied Surface Science, 2013, 279, 317-323.	3.1	25
96	Adsorption and reduction of platinum(IV) chloride complex ions on activated carbon. Transactions of Nonferrous Metals Society of China, 2013, 23, 1147-1156.	1.7	22
97	Application of as-synthesized Co–Al layered double hydroxides for the preparation of the electroactive composites containing N-doped carbon nanotubes. Applied Clay Science, 2013, 72, 163-174.	2.6	19
98	Changes in the morphology and the composition of the Ag \mid Gd0.2Ce0.8O1.9 interface caused by polarization. Electrochimica Acta, 2013, 104, 474-480.	2.6	10
99	Surface properties of nanozirconia and their effect on its rheological behaviour and sinterability. Journal of the European Ceramic Society, 2013, 33, 1875-1883.	2.8	20
100	Plasma electrolytic oxidation of a Ti–15Mo alloy in silicate solutions. Materials Letters, 2013, 100, 252-256.	1.3	11
101	Anodic oxidation of zirconium in silicate solutions. Electrochimica Acta, 2013, 104, 518-525.	2.6	53
102	Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology. Electrochimica Acta, 2013, 105, 412-418.	2.6	25
103	Changes in the morphology and the composition of the Ag YSZ and Ag LSM interfaces caused by polarization. Solid State Ionics, 2012, 225, 755-759.	1.3	13
104	The Influence of Base Metal (M) Oxidation State in Au-M-O/TiO2 Systems on Their Catalytic Activity in Carbon Monoxide Oxidation. Catalysts, 2012, 2, 38-55.	1.6	6
105	Au/FeOx catalysts of different degree of iron oxide reduction. Catalysis Today, 2012, 187, 20-29.	2.2	19
106	Nanospace constraints in mesoporous silica carriersâ€"A factor of critical importance in promoting the catalytic activity of supported ruthenium (II) complex with hemilabile phosphine ligand. Applied Catalysis A: General, 2012, 427-428, 16-23.	2.2	1
107	Influence of Polymorphic ZrO ₂ Phases and the Silver Electronic State on the Activity of Ag/ZrO ₂ Catalysts in the Hydrogenation of CO ₂ to Methanol. ACS Catalysis, 2011, 1, 266-278.	5.5	105
108	lonic Conductivity of the CeO2-Gd2O3-SrO System. Archives of Metallurgy and Materials, 2011, 56, .	0.6	4

#	Article	IF	CITATIONS
109	Phenolic profile and antioxidant properties of Polish honeys. International Journal of Food Science and Technology, 2011, 46, 528-534.	1.3	84
110	Unique cation surroundings in the structure of Ag3PW12O40 salt. Solid State Sciences, 2011, 13, 1276-1284.	1.5	17
111	Phosphate–permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies. Surface and Coatings Technology, 2011, 206, 51-62.	2.2	90
112	The influence of surface composition of Ag3PW12O40 and Ag3PMo12O40 salts on their catalytic activity in dehydration of ethanol. Journal of Molecular Catalysis A, 2011, 351, 1-10.	4.8	40
113	Cluster–support interaction in Au–Fe3O4 system. Catalysis Today, 2011, 169, 24-28.	2.2	18
114	Reduced copper salt of Wells–Dawson type heteropolyacid as a bifunctional catalyst. Catalysis Today, 2011, 169, 150-155.	2.2	7
115	Preparation and characterization of RuCl3 – Diamine group functionalized polymer. Reactive and Functional Polymers, 2010, 70, 382-391.	2.0	7
116	Silver nanowires as a result of irradiation or hydrogen reduction of Ag3 PW12 O40 salt. Surface and Interface Analysis, 2010, 42, 757-761.	0.8	8
117	Au adsorption on defectâ€rich MgO(100) surfaces. Surface and Interface Analysis, 2010, 42, 536-539.	0.8	9
118	Photocatalytic Activity of Titanium Dioxide Modified by Silver Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1945-1953.	4.0	159
119	Calcium uptake by casein embedded in polyelectrolyte multilayer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 118-126.	2.3	15
120	Do Cu(II) ions need Al atoms in their environment to make CuSiBEA active in the SCR of NO by ethanol or propane? A spectroscopy and catalysis study. Applied Catalysis B: Environmental, 2009, 85, 131-138.	10.8	75
121	Selective catalytic reduction of NO by ethanol: Speciation of iron and "structure–properties― relationship in FeSiBEA zeolite. Applied Catalysis B: Environmental, 2009, 91, 113-122.	10.8	60
122	Effect of Cu content on the catalytic activity of CuSiBEA zeolite in the SCR of NO by ethanol: Nature of the copper species. Applied Catalysis B: Environmental, 2009, 91, 217-224.	10.8	72
123	Influence of the Content and Environment of Chromium in CrSiBEA Zeolites on the Oxidative Dehydrogenation of Propane. Journal of Physical Chemistry C, 2009, 113, 13273-13281.	1.5	42
124	Metal release and formation of surface precipitate at stainless steel grade 316 and Hanks solution interface – Inflammatory response and surface finishing effects. Corrosion Science, 2009, 51, 1157-1162.	3.0	38
125	Porous Silicon Formation by Metal-Assisted Chemical Etching. Acta Physica Polonica A, 2009, 116, S-117-S-119.	0.2	16
126	Incorporation of Copper in SiBEA Zeolite as Isolated Lattice Mononuclear Cu(II) Species and its Role in Selective Catalytic Reduction of NO by Ethanol. Catalysis Letters, 2008, 126, 36-42.	1.4	31

#	Article	IF	CITATIONS
127	Cu ²⁺ Ions as a Paramagnetic Probe in EPR Studies of Radicals Generated Thermally in Starch. Starch/Staerke, 2008, 60, 134-145.	1.1	22
128	XPS and NMR studies of phosphoric acid activated carbons. Carbon, 2008, 46, 2113-2123.	5.4	743
129	Effect of deposition conditions on the formation of silica-silicate thin films. Surface and Coatings Technology, 2007, 201, 5960-5966.	2.2	11
130	Catalytic combustion of toluene over mixed Cu–Mn oxides. Catalysis Today, 2007, 119, 321-326.	2.2	92
131	Effect of Co content on the catalytic activity of CoSiBEA zeolite in the selective catalytic reduction of NO with ethanol: Nature of the cobalt species. Applied Catalysis B: Environmental, 2007, 75, 239-248.	10.8	86
132	Activity of a PtBi alloy in the electrochemical oxidation of formic acid. Electrochemistry Communications, 2006, 8, 1492-1498.	2.3	113
133	Mechanism of formation of silica–silicate thin films on zinc. Thin Solid Films, 2005, 488, 45-55.	0.8	18
134	Particle-electrode surface interaction during nickel electrodeposition from suspensions containing SiC and SiO2 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 235, 45-55.	2.3	65
135	The influence of fluoride anions on the silicon carbide surface oxidation in aqueous solutions. Applied Surface Science, 2003, 212-213, 636-643.	3.1	8
136	Influence of the surface properties of silicon carbide on the process of SiC particles codeposition with nickel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208, 267-275.	2.3	62
137	Oxidation of the silicon carbide surface in Watts' plating bath. Surface and Interface Analysis, 2002, 34, 413-417.	0.8	35
138	Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel. Journal of Applied Electrochemistry, 2000, 30, 429-437.	1.5	86
139	Polypyrrole–Silver Composite Nanowire Arrays by Cathodic Co-Deposition and Their Electrochemical Properties. Journal of Physical Chemistry C, 0, , 130916100825004.	1.5	13