Anja Zeigerer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9130808/publications.pdf

Version: 2024-02-01

361045 476904 3,721 29 20 29 citations h-index g-index papers 34 34 34 5643 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature Biotechnology, 2013, 31, 638-646.	9.4	1,060
2	Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms. Molecular Therapy, 2010, 18, 1357-1364.	3.7	831
3	Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature, 2012, 485, 465-470.	13.7	322
4	Insulin Stimulation of GLUT4 Exocytosis, but Not Its Inhibition of Endocytosis, Is Dependent on RabGAP AS160. Molecular Biology of the Cell, 2004, 15, 4406-4415.	0.9	197
5	GLUT4 Is Retained by an Intracellular Cycle of Vesicle Formation and Fusion with Endosomes. Molecular Biology of the Cell, 2004, 15, 870-882.	0.9	164
6	GLUT4 Retention in Adipocytes Requires Two Intracellular Insulin-regulated Transport Steps. Molecular Biology of the Cell, 2002, 13, 2421-2435.	0.9	158
7	Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. Developmental Cell, 2018, 47, 205-221.e7.	3.1	132
8	Insulin-regulated Release from the Endosomal Recycling Compartment Is Regulated by Budding of Specialized Vesicles. Molecular Biology of the Cell, 2001, 12, 3489-3501.	0.9	119
9	Hepatic lipid droplet homeostasis and fatty liver disease. Seminars in Cell and Developmental Biology, 2020, 108, 72-81.	2.3	88
10	Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Archives of Toxicology, 2019, 93, 1609-1637.	1.9	86
11	Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. Nature Communications, 2014, 5, 3869.	5.8	76
12	Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Experimental Cell Research, 2017, 350, 242-252.	1.2	73
13	Identification of siRNA delivery enhancers by a chemical library screen. Nucleic Acids Research, 2015, 43, 7984-8001.	6.5	58
14	Glucose homeostasis is regulated by pancreatic \hat{l}^2 -cell cilia via endosomal EphA-processing. Nature Communications, 2019, 10, 5686.	5.8	54
15	Regulation of Liver Metabolism by the Endosomal GTPase Rab5. Cell Reports, 2015, 11, 884-892.	2.9	47
16	Insulin regulates leptin secretion from 3T3–L1 adipocytes by a PI 3 kinase independent mechanism. Experimental Cell Research, 2008, 314, 2249-2256.	1.2	46
17	Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Molecular Metabolism, 2021, 49, 101181.	3.0	39
18	A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metabolism, 2022, 34, 473-486.e9.	7.2	34

#	Article	IF	CITATIONS
19	Hepatic Rab24 controls blood glucose homeostasis via improving mitochondrial plasticity. Nature Metabolism, 2019, 1, 1009-1026.	5.1	27
20	Metabolic regulation through the endosomal system. Traffic, 2019, 20, 552-570.	1.3	27
21	Glucagon's Metabolic Action in Health and Disease. , 2021, 11, 1759-1783.		21
22	Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cellular Signalling, 2019, 57, 45-57.	1.7	18
23	Combination therapies induce cancer cell death through the integrated stress response and disturbed pyrimidine metabolism. EMBO Molecular Medicine, 2021, 13, e12461.	3.3	12
24	NAFLD - A rising metabolic disease. Molecular Metabolism, 2021, 50, 101274.	3.0	10
25	A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage. Cell Reports, 2017, 20, 1422-1434.	2.9	7
26	Acute loss of the hepatic endo-lysosomal system in vivo causes compensatory changes in iron homeostasis. Scientific Reports, 2017, 7, 4023.	1.6	4
27	RNA sequencing reveals niche gene expression effects of beta-hydroxybutyrate in primary myotubes. Life Science Alliance, 2021, 4, e202101037.	1.3	4
28	Hepatocyte-specific activity of TSC22D4 triggers progressive NAFLD by impairing mitochondrial function. Molecular Metabolism, 2022, 60, 101487.	3.0	3
29	Career pathways, part 2. Nature Metabolism, 2020, 2, 651-652.	5.1	О