Ormond A Macdougald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/913061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology, 2006, 7, 885-896.	16.1	2,163
2	Inhibition of Adipogenesis by Wnt Signaling. Science, 2000, 289, 950-953.	6.0	1,705
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /	Overlock 1 4.3	0 Tf 50 662 T 1,430
4	Regulation of bone mass by Wnt signaling. Journal of Clinical Investigation, 2006, 116, 1202-1209.	3.9	1,211
5	TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Cell, 2006, 126, 955-968.	13.5	1,183
6	p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes. Current Biology, 2007, 17, 1298-1307.	1.8	1,045
7	Transcriptional Regulation of Gene Expression During Adipocyte Differentiation. Annual Review of Biochemistry, 1995, 64, 345-373.	5.0	986
8	Regulation of osteoblastogenesis and bone mass by Wnt10b. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3324-3329.	3.3	778
9	The Role of C/EBP Genes in Adipocyte Differentiation. Journal of Biological Chemistry, 1998, 273, 30057-30060.	1.6	656
10	Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nature Communications, 2012, 3, 735.	5.8	649
11	Regulation of Wnt Signaling during Adipogenesis. Journal of Biological Chemistry, 2002, 277, 30998-31004.	1.6	647
12	Regulation of Adipocyte Development. Annual Review of Nutrition, 1994, 14, 99-129.	4.3	610
13	Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9034-9037.	3.3	486
14	Bone Marrow Adipose Tissue Is an Endocrine Organ that Contributes to Increased Circulating Adiponectin during Caloric Restriction. Cell Metabolism, 2014, 20, 368-375.	7.2	415
15	Wnt Signaling Stimulates Osteoblastogenesis of Mesenchymal Precursors by Suppressing CCAAT/Enhancer-binding Protein α and Peroxisome Proliferator-activated Receptor γ. Journal of Biological Chemistry, 2007, 282, 14515-14524.	1.6	350
16	Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone, 2012, 50, 477-489.	1.4	348
17	Adipose tissue stem cells meet preadipocyte commitment: going back to the future. Journal of Lipid Research, 2012, 53, 227-246.	2.0	339
18	Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nature Communications, 2015, 6, 7808.	5.8	332

#	Article	IF	CITATIONS
19	Marrow Fat and Bone—New Perspectives. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 935-945.	1.8	319
20	Wnt10b Inhibits Development of White and Brown Adipose Tissues. Journal of Biological Chemistry, 2004, 279, 35503-35509.	1.6	316
21	Adipogenesis: forces that tip the scales. Trends in Endocrinology and Metabolism, 2002, 13, 5-11.	3.1	314
22	Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation*. Journal of Biological Chemistry, 2010, 285, 33652-33661.	1.6	313
23	Wnt/β-catenin signaling in adipogenesis and metabolism. Current Opinion in Cell Biology, 2007, 19, 612-617.	2.6	308
24	Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of Applied Physiology, 2010, 108, 1487-1496.	1.2	296
25	Quantifying Size and Number of Adipocytes in Adipose Tissue. Methods in Enzymology, 2014, 537, 93-122.	0.4	293
26	Wnt10b Increases Postnatal Bone Formation by Enhancing Osteoblast Differentiation. Journal of Bone and Mineral Research, 2007, 22, 1924-1932.	3.1	244
27	Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E198-E206.	1.8	228
28	Microarray Analyses during Adipogenesis: Understanding the Effects of Wnt Signaling on Adipogenesis and the Roles of Liver X Receptor α in Adipocyte Metabolism. Molecular and Cellular Biology, 2002, 22, 5989-5999.	1.1	227
29	Wnt Signaling Inhibits Adipogenesis through β-Catenin-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2005, 280, 24004-24010.	1.6	224
30	Wnt signaling promotes oncogenic transformation by inhibiting c-Myc–induced apoptosis. Journal of Cell Biology, 2002, 157, 429-440.	2.3	203
31	Wnt Signaling Protects 3T3-L1 Preadipocytes from Apoptosis through Induction of Insulin-like Growth Factors. Journal of Biological Chemistry, 2002, 277, 38239-38244.	1.6	191
32	Multiple Roles for the Non-Coding RNA SRA in Regulation of Adipogenesis and Insulin Sensitivity. PLoS ONE, 2010, 5, e14199.	1.1	191
33	Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 873-877.	3.3	178
34	Clycogen Synthase Kinase 3 Is an Insulin-Regulated C/EBPα Kinase. Molecular and Cellular Biology, 1999, 19, 8433-8441.	1.1	178
35	Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma?. Arthritis and Rheumatism, 2011, 63, 1707-1717.	6.7	178
36	The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15417-15422.	3.3	177

Ormond A Macdougald

#	Article	IF	CITATIONS
37	Marrow Adipose Tissue: Trimming the Fat. Trends in Endocrinology and Metabolism, 2016, 27, 392-403.	3.1	171
38	Fat-specific Protein 27 Regulates Storage of Triacylglycerol. Journal of Biological Chemistry, 2008, 283, 14355-14365.	1.6	169
39	Critical Role for Hypothalamic mTOR Activity in Energy Balance. Cell Metabolism, 2009, 9, 362-374.	7.2	164
40	Role of wnts in prostate cancer bone metastases. Journal of Cellular Biochemistry, 2006, 97, 661-672.	1.2	155
41	Wnt10b Inhibits Obesity in ob/ob and Agouti Mice. Diabetes, 2007, 56, 295-303.	0.3	154
42	Insulin Regulates Transcription of the CCAAT/Enhancer Binding Protein (C/EBP) α , β , and δ Genes in Fully-differentiated 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1995, 270, 647-654.	1.6	150
43	Signaling Pathways through Which Insulin Regulates CCAAT/Enhancer Binding Protein α (C/EBPα) Phosphorylation and Gene Expression in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1997, 272, 25913-25919.	1.6	147
44	Secreted frizzled-related protein 5 suppresses adipocyte mitochondrial metabolism through WNT inhibition. Journal of Clinical Investigation, 2012, 122, 2405-2416.	3.9	141
45	Phosphorylation of C/EBPα Inhibits Granulopoiesis. Molecular and Cellular Biology, 2004, 24, 675-686.	1.1	139
46	Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4300-4305.	3.3	138
47	LXRβ Is Required for Adipocyte Growth, Glucose Homeostasis, and β Cell Function. Journal of Biological Chemistry, 2005, 280, 23024-23031.	1.6	138
48	Maternal nutrition and risk of obesity in offspring: The Trojan horse of developmental plasticity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 495-506.	1.8	137
49	A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice. Journal of Cellular Physiology, 2015, 230, 2032-2037.	2.0	137
50	Use of Osmium Tetroxide Staining with Microcomputerized Tomography to Visualize and Quantify Bone Marrow Adipose Tissue In Vivo. Methods in Enzymology, 2014, 537, 123-139.	0.4	136
51	Wnt10b Deficiency Promotes Coexpression of Myogenic and Adipogenic Programs in Myoblasts. Molecular Biology of the Cell, 2005, 16, 2039-2048.	0.9	131
52	Transcriptional Control of the Stearoyl-CoA Desaturase-1 Gene by Polyunsaturated Fatty Acids1. Biochemical and Biophysical Research Communications, 1994, 200, 763-768.	1.0	126
53	Metallothionein Expression Is Suppressed in Primary Human Hepatocellular Carcinomas and Is Mediated through Inactivation of CCAAT/Enhancer Binding Protein α by Phosphatidylinositol 3-Kinase Signaling Cascade. Cancer Research, 2007, 67, 2736-2746.	0.4	119
54	The Rapidly Expanding Family of Adipokines. Cell Metabolism, 2007, 6, 159-161.	7.2	119

#	Article	IF	CITATIONS
55	Effects of Wnt Signaling on Brown Adipocyte Differentiation and Metabolism Mediated by PGC-1α. Molecular and Cellular Biology, 2005, 25, 1272-1282.	1.1	117
56	Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology, 2016, 157, 508-521.	1.4	114
57	Loss of Bone and Wnt10b Expression in Male Type 1 Diabetic Mice Is Blocked by the Probiotic Lactobacillus reuteri. Endocrinology, 2015, 156, 3169-3182.	1.4	113
58	Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors. Journal of Biological Chemistry, 2013, 288, 32475-32489.	1.6	110
59	Reciprocal Control of Osteogenic and Adipogenic Differentiation by ERK/MAP Kinase Phosphorylation of Runx2 and PPARÎ ³ Transcription Factors. Journal of Cellular Physiology, 2016, 231, 587-596.	2.0	105
60	Dermal white adipose tissue: a new component of the thermogenic response. Journal of Lipid Research, 2015, 56, 2061-2069.	2.0	104
61	p300 Coactivates the Adipogenic Transcription Factor CCAAT/Enhancer-binding Protein α. Journal of Biological Chemistry, 2001, 276, 16348-16355.	1.6	101
62	Development, regulation, metabolism and function of bone marrow adipose tissues. Bone, 2018, 110, 134-140.	1.4	98
63	Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications, 2020, 11, 3097.	5.8	98
64	SRA Gene Knockout Protects against Diet-induced Obesity and Improves Glucose Tolerance. Journal of Biological Chemistry, 2014, 289, 13000-13009.	1.6	93
65	Growth Hormone Regulates Phosphorylation and Function of CCAAT/Enhancer-binding Protein β by Modulating Akt and Glycogen Synthase Kinase-3. Journal of Biological Chemistry, 2001, 276, 19664-19671.	1.6	92
66	Dual Regulation of Phosphorylation and Dephosphorylation of C/EBPβ Modulate Its Transcriptional Activation and DNA Binding in Response to Growth Hormone. Journal of Biological Chemistry, 2002, 277, 44557-44565.	1.6	92
67	Syndecan-1 Is Required to Maintain Intradermal Fat and Prevent Cold Stress. PLoS Genetics, 2014, 10, e1004514.	1.5	89
68	Critical roles for the TSC-mTOR pathway in β-cell function. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1013-E1022.	1.8	88
69	Adipose tissue stem cells: the great WAT hope. Trends in Endocrinology and Metabolism, 2012, 23, 270-277.	3.1	88
70	Bone marrow adipocytes resist lipolysis and remodeling in response to Î ² -adrenergic stimulation. Bone, 2019, 118, 32-41.	1.4	86
71	Regulation of Lipid Homeostasis by the Bifunctional SREBF2-miR33a Locus. Cell Metabolism, 2011, 13, 241-247.	7.2	73
72	Continuous-Flow Enzyme Assay on a Microfluidic Chip for Monitoring Glycerol Secretion from Cultured Adipocytes. Analytical Chemistry, 2009, 81, 2350-2356.	3.2	72

#	Article	IF	CITATIONS
73	T-Cell Factor 4N (TCF-4N), a Novel Isoform of Mouse TCF-4, Synergizes with β-Catenin To Coactivate C/EBPα and Steroidogenic Factor 1 Transcription Factors. Molecular and Cellular Biology, 2003, 23, 5366-5375.	1.1	67
74	ldentification of members of the Wnt signaling pathway in the embryonic pituitary gland. Mammalian Genome, 2001, 12, 843-851.	1.0	63
75	Inhibitor of DNA Binding 2 Is a Small Molecule-Inducible Modulator of Peroxisome Proliferator-Activated Receptor-γ Expression and Adipocyte Differentiation. Molecular Endocrinology, 2008, 22, 2038-2048.	3.7	62
76	Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte, 2016, 5, 251-269.	1.3	61
77	On the Role of FOX Transcription Factors in Adipocyte Differentiation and Insulin-stimulated Glucose Uptake. Journal of Biological Chemistry, 2009, 284, 10755-10763.	1.6	56
78	The many facets of PPARÎ ³ : novel insights for the skeleton. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E3-E9.	1.8	56
79	The Transcription Factor Paired-Related Homeobox 1 (Prrx1) Inhibits Adipogenesis by Activating Transforming Growth Factor-β (TGFβ) Signaling. Journal of Biological Chemistry, 2013, 288, 3036-3047.	1.6	56
80	FGF-21 and Skeletal Remodeling During and After Lactation in C57BL/6J Mice. Endocrinology, 2014, 155, 3516-3526.	1.4	56
81	Inhibiting DNA methylation switches adipogenesis to osteoblastogenesis by activating Wnt10a. Scientific Reports, 2016, 6, 25283.	1.6	53
82	Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Molecular Metabolism, 2020, 42, 101078.	3.0	53
83	Adipocyte Differentiation: When precursors are also regulators. Current Biology, 1995, 5, 618-621.	1.8	52
84	Induction of the Peroxisomal Glycerolipid-synthesizing Enzymes during Differentiation of 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2000, 275, 9441-9446.	1.6	52
85	Sweet Taste Receptor Deficient Mice Have Decreased Adiposity and Increased Bone Mass. PLoS ONE, 2014, 9, e86454.	1.1	52
86	CCAAT/Enhancer-binding Protein α Mediates Induction of Hepatic Phosphoenolpyruvate Carboxykinase by p38 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 2006, 281, 24390-24397.	1.6	51
87	Resistance to Diet-Induced Obesity and Improved Insulin Sensitivity in Mice With a Regulator of G Protein Signaling–Insensitive G184S Gnai2 Allele. Diabetes, 2008, 57, 77-85.	0.3	50
88	Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Scientific Reports, 2016, 6, 21520.	1.6	50
89	Regulation of Cyclin D1 and Wnt10b Gene Expression by cAMP-responsive Element-binding Protein during Early Adipogenesis Involves Differential Promoter Methylation. Journal of Biological Chemistry, 2008, 283, 35096-35105.	1.6	49
90	Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Molecular Metabolism, 2016, 5, 480-490.	3.0	48

#	Article	IF	CITATIONS
91	Omentum and bone marrow: how adipocyteâ€rich organs create tumour microenvironments conducive for metastatic progression. Obesity Reviews, 2016, 17, 1015-1029.	3.1	47
92	CCAAT/Enhancer Binding Protein α Assembles Essential Cooperating Factors in Common Subnuclear Domains. Molecular Endocrinology, 2001, 15, 1665-1676.	3.7	44
93	Non-canonical Wnt signaling enhances differentiation of Sca1+/c-kit+ adipose-derived murine stromal vascular cells into spontaneously beating cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2007, 43, 362-370.	0.9	43
94	SRA Regulates Adipogenesis by Modulating p38/JNK Phosphorylation and Stimulating Insulin Receptor Gene Expression and Downstream Signaling. PLoS ONE, 2014, 9, e95416.	1.1	43
95	Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nature Metabolism, 2021, 3, 443-445.	5.1	43
96	Role of Wnt10b and C/EBPα in spontaneous adipogenesis of 243 cells. Biochemical and Biophysical Research Communications, 2003, 302, 12-16.	1.0	40
97	Ectopic expression of Wnt10b decreases adiposity and improves glucose homeostasis in obese rats. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E726-E736.	1.8	39
98	Molecular Differences Between Subtypes of Bone Marrow Adipocytes. Current Molecular Biology Reports, 2018, 4, 16-23.	0.8	39
99	CCAAT/Enhancer-binding Protein β (C/EBPβ) and C/EBPÎ′ Contribute to Growth Hormone-regulated Transcription of c-fos. Journal of Biological Chemistry, 1999, 274, 31597-31604.	1.6	38
100	Disruption of cell–matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation. Experimental Cell Research, 2008, 314, 3382-3391.	1.2	38
101	Obesity and metabolic perturbations after loss of aquaporin 7, the adipose glycerol transporter. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10759-10760.	3.3	34
102	NF-Y and CCAAT/Enhancer-binding Protein Î \pm Synergistically Activate the Mouse Amelogenin Gene*. Journal of Biological Chemistry, 2006, 281, 16090-16098.	1.6	34
103	Increased Circulating Adiponectin in Response to Thiazolidinediones: Investigating the Role of Bone Marrow Adipose Tissue. Frontiers in Endocrinology, 2016, 7, 128.	1.5	32
104	Identification and Dissection of Diverse Mouse Adipose Depots. Journal of Visualized Experiments, 2019, , .	0.2	32
105	The E3 ubiquitin ligase parkin is dispensable for metabolic homeostasis in murine pancreatic β cells and adipocytes. Journal of Biological Chemistry, 2019, 294, 7296-7307.	1.6	32
106	G-CSF partially mediates effects of sleeve gastrectomy on the bone marrow niche. Journal of Clinical Investigation, 2019, 129, 2404-2416.	3.9	32
107	The influence of Leucine-rich amelogenin peptide on MSC fate by inducing Wnt10b expression. Biomaterials, 2011, 32, 6478-6486.	5.7	31
108	The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight, 2021, 6, .	2.3	29

Ormond A Macdougald

#	Article	IF	CITATIONS
109	CCAAT/Enhancer Binding Protein Assembles Essential Cooperating Factors in Common Subnuclear Domains. Molecular Endocrinology, 2001, 15, 1665-1676.	3.7	28
110	Iron elevation and adipose tissue remodeling in the epididymal depot of a mouse model of polygenic obesity. PLoS ONE, 2017, 12, e0179889.	1.1	27
111	Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. ELife, 0, 11, .	2.8	27
112	Reversibly sealed multilayer microfluidic device for integrated cell perfusion and on-line chemical analysis of cultured adipocyte secretions. Analytical and Bioanalytical Chemistry, 2010, 397, 2939-2947.	1.9	26
113	Multiplexed microfluidic enzyme assays for simultaneous detection of lipolysis products from adipocytes. Analytical and Bioanalytical Chemistry, 2014, 406, 4851-4859.	1.9	26
114	Genetic inhibition of PPAR 3 S112 phosphorylation reduces bone formation and stimulates marrow adipogenesis. Bone, 2018, 107, 1-9.	1.4	26
115	Maternal low-protein diet on the last week of pregnancy contributes to insulin resistance and β-cell dysfunction in the mouse offspring. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R485-R496.	0.9	26
116	Inflammatory responses to dietary and surgical weight loss in male and female mice. Biology of Sex Differences, 2019, 10, 16.	1.8	25
117	Regulation of adipocyte differentiation and metabolism by lansoprazole. Life Sciences, 2019, 239, 116897.	2.0	24
118	Hyperphagia and Obesity in Female Mice Lacking Tissue Inhibitor of Metalloproteinase-1. Endocrinology, 2009, 150, 1697-1704.	1.4	23
119	Red and White Blood Cell Counts Are Associated With Bone Marrow Adipose Tissue, Bone Mineral Density, and Bone Microarchitecture in Premenopausal Women. Journal of Bone and Mineral Research, 2020, 35, 1031-1039.	3.1	23
120	Bone marrow adipose tissue does not express UCP1 during development or adrenergic-induced remodeling. Scientific Reports, 2019, 9, 17427.	1.6	22
121	Administration of Saccharin to Neonatal Mice Influences Body Composition of Adult Males and Reduces Body Weight of Females. Endocrinology, 2014, 155, 1313-1326.	1.4	21
122	SnapShot: Niche Determines Adipocyte Character I. Cell Metabolism, 2018, 27, 264-264.e1.	7.2	21
123	Lactational High-Fat Diet Exposure Programs Metabolic Inflammation and Bone Marrow Adiposity in Male Offspring. Nutrients, 2019, 11, 1393.	1.7	20
124	Physical dissection of the CCAAT/enhancer-binding protein \hat{I}_{\pm} in regulating the mouse amelogenin gene. Biochemical and Biophysical Research Communications, 2007, 354, 56-61.	1.0	19
125	Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Molecular Metabolism, 2020, 39, 100992.	3.0	19
126	Wnt Signaling: From Mesenchymal Cell Fate to Lipogenesis and Other Mature Adipocyte Functions. Diabetes, 2021, 70, 1419-1430.	0.3	19

#	Article	IF	CITATIONS
127	Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nature Communications, 2021, 12, 4768.	5.8	19
128	Phosphorylation of CCAAT/Enhancer-binding Protein α Regulates GLUT4 Expression and Glucose Transport in Adipocytes. Journal of Biological Chemistry, 2008, 283, 18002-18011.	1.6	18
129	Molecular differences between subtypes of bone marrow adipocytes. Current Molecular Biology Reports, 2018, 4, 16-23.	0.8	18
130	Evaporative cooling provides a major metabolic energy sink. Molecular Metabolism, 2019, 27, 47-61.	3.0	17
131	Amino Acids Enhance Polyubiquitination of Rheb and Its Binding to mTORC1 by Blocking Lysosomal ATXN3 Deubiquitinase Activity. Molecular Cell, 2020, 80, 437-451.e6.	4.5	17
132	Visualization by BiFC of different C/EBPβ dimers and their interaction with HP1α reveals a differential subnuclear distribution of complexes in living cells. Experimental Cell Research, 2011, 317, 706-723.	1.2	16
133	Localization of an adipocyte-specific retinoic acid response domain controlling S14 gene transcription. Biochemical and Biophysical Research Communications, 1992, 188, 470-476.	1.0	14
134	Will fatty worms help cure human obesity?. Trends in Genetics, 2003, 19, 523-525.	2.9	14
135	Cyclical Dedifferentiation and Redifferentiation of Mammary Adipocytes. Cell Metabolism, 2018, 28, 187-189.	7.2	14
136	Adipocyte-Specific Deletion of Lamin A/C Largely Models Human Familial Partial Lipodystrophy Type 2. Diabetes, 2021, 70, 1970-1984.	0.3	14
137	Contrasting recruitment of skinâ€associated adipose depots during cold challenge of mouse and human. Journal of Physiology, 2022, 600, 847-868.	1.3	12
138	Tissue specificity of S14 and fatty acid synthase invitro transcription. Biochemical and Biophysical Research Communications, 1992, 182, 631-637.	1.0	11
139	Transfection of Adipocytes by Gene Gun-Mediated Transfer. BioTechniques, 1999, 26, 660-668.	0.8	11
140	The molecular and metabolic program by which white adipocytes adapt to cool physiologic temperatures. PLoS Biology, 2021, 19, e3000988.	2.6	11
141	Regulation of Rat Alcohol-Dehydrogenase by Cyclic AMP in Primary Hepatocyte Culture. Archives of Biochemistry and Biophysics, 1995, 321, 329-335.	1.4	10
142	Transcription factor sumoylation and factor YY1 serve to modulate mouse amelogenin gene expression. European Journal of Oral Sciences, 2006, 114, 169-177.	0.7	10
143	Foreword: Interactions between bone and adipose tissue and metabolism. Bone, 2012, 50, 429.	1.4	10
144	Regulation of CCAAT/Enhancer Binding Proteinα (C/EBPα) Gene Expression by Thiazolidinediones in 3T3-L1 Adipocytes. Biochemical and Biophysical Research Communications, 1998, 244, 20-25.	1.0	9

#	Article	IF	CITATIONS
145	Stem cell factor: the bridge between bone marrow adipocytes and hematopoietic cells. Haematologica, 2019, 104, 1689-1691.	1.7	9
146	Fickle factor foils fat fate. Nature Cell Biology, 2005, 7, 543-545.	4.6	8
147	Preclinical models for investigating how bone marrow adipocytes influence bone and hematopoietic cellularity. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101547.	2.2	8
148	SnapShot: Niche Determines Adipocyte Character II. Cell Metabolism, 2018, 27, 266-266.e1.	7.2	7
149	The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation. Journal of Biological Chemistry, 2019, 294, 18408-18420.	1.6	7
150	BAd-CRISPR: Inducible gene knockout in interscapular brown adipose tissue of adult mice. Journal of Biological Chemistry, 2021, 297, 101402.	1.6	5
151	Preface. Methods in Enzymology, 2014, 538, xv.	0.4	4
152	Deletion of the Brain-Specific α and δIsoforms of Adapter Protein SH2B1 Protects Mice From Obesity. Diabetes, 2021, 70, 400-414.	0.3	4
153	Tetracycline response element driven Cre causes ectopic recombinase activity independent of transactivator element. Molecular Metabolism, 2022, 61, 101501.	3.0	4
154	Viral and Nonviral Transfer of Genetic Materials to Adipose Tissues: Toward a Gold Standard Approach. Diabetes, 2020, 69, 2581-2588.	0.3	2
155	Signaling Pathway Puts the Break on Fat Cell Formation. Scientific World Journal, The, 2001, 1, 188-189.	0.8	1
156	The silent wif of death. IBMS BoneKEy, 2009, 6, 339-341.	0.1	1
157	Bone marrow adipocytes in 3D. Nature Reviews Endocrinology, 2018, 14, 254-255.	4.3	1
158	Chapter 8 Regulation of adipocyte differentiation and metabolism by Wnt signaling and C/EBP transcription factors. Advances in Molecular and Cellular Endocrinology, 2006, , 153-314.	0.1	0
159	Marrow Adipose Tissue and its Interactions with the Skeletal, Hematopoietic, and Immune Systems. , 2016, , 345-352.		0
160	Adipogenesis of Adipose Stromal Cells is Reduced by Endothelial Cell Coâ€cultivation: Role for Wntâ€signaling. FASEB Journal, 2008, 22, 49.11.	0.2	0
161	Local interactions in the bone marrow microenvironment and their contributions to systemic metabolic processes. , 2020, , 63-80.		Ο