Keith Millington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9130362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoyellowing of wool. Part 1: Factors affecting photoyellowing and experimental techniques. Coloration Technology, 2006, 122, 169-186.	1.5	103
2	Photoprotection by Silk Cocoons. Biomacromolecules, 2013, 14, 3660-3667.	5.4	68
3	Producing highâ€quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review. Journal of Applied Polymer Science, 2016, 133, .	2.6	67
4	Photoyellowing of wool. Part 2: Photoyellowing mechanisms and methods of prevention. Coloration Technology, 2006, 122, 301-316.	1.5	64
5	Detection of hydroxyl radicals in photoirradiated wool, cotton, nylon and polyester fabrics using a fluorescent probe. Coloration Technology, 2002, 118, 6-14.	1.5	62
6	The photodegradation of wool keratin II. Proposed mechanisms involving cystine. Journal of Photochemistry and Photobiology B: Biology, 1997, 39, 204-212.	3.8	53
7	The photostability of wool doped with photocatalytic titanium dioxide nanoparticles. Polymer Degradation and Stability, 2009, 94, 278-283.	5.8	46
8	Proteomic evaluation and location of UVB-induced photo-oxidation in wool. Journal of Photochemistry and Photobiology B: Biology, 2010, 98, 118-127.	3.8	45
9	Photodegradation of wool keratin: Part I. Vibrational spectroscopic studies. Biospectroscopy, 1996, 2, 249-258.	0.6	43
10	The generation of superoxide and hydrogen peroxide by exposure of fluorescent whitening agents to UVA radiation and its relevance to the rapid photoyellowing of whitened wool. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165, 177-185.	3.9	41
11	A morphology-related study on photodegradation of protein fibres. Journal of Photochemistry and Photobiology B: Biology, 2008, 92, 135-143.	3.8	39
12	Using Ultraviolet Radiation to Reduce Pilling of Knitted Wool and Cotton. Textile Reseach Journal, 1998, 68, 413-421.	2.2	37
13	Mordant dyes as sensitisers in dye-sensitised solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1618-1630.	6.2	35
14	Spectroscopic analysis of heterogeneous photocatalysis products of nonylphenol- and primary alcohol ethoxylate nonionic surfactants. Chemosphere, 1996, 33, 1921-1940.	8.2	30
15	Polyacrylonitrile-based precursors and carbon fibers derived from advanced RAFT technology and conventional methods – The 1st comparative study. Materials Today Communications, 2016, 9, 22-29.	1.9	30
16	Comparison of the effects of gamma and ultraviolet radiation on wool keratin. Coloration Technology, 2000, 116, 266-272.	1.5	27
17	Photo-induced chemiluminescence from fibrous polymers and proteins. Polymer Degradation and Stability, 2008, 93, 640-647.	5.8	25
18	Diffuse reflectance spectroscopy of fibrous proteins. Amino Acids, 2012, 43, 1277-1285.	2.7	25

2

KEITH MILLINGTON

#	Article	IF	CITATIONS
19	Zinc(II), iron(III), molybdenum(II) chloride and molybdenum(V), molybdenum(VI) oxochloride complexes of trimethylamine: synthesis, spectra and X-ray crystal structure characterisation. Inorganica Chimica Acta, 1984, 89, 185-191.	2.4	21
20	The Photoyellowing of Stilbene-derived Fluorescent Whitening Agents—Mass Spectrometric Characterization of Yellow Photoproducts. Photochemistry and Photobiology, 2007, 84, 071018085748001-???.	2.5	18
21	Improving the photostability of silk using a covalently-bound UV absorber. Polymer Degradation and Stability, 2015, 121, 187-192.	5.8	18
22	Improving the photostability of whitened wool by applying an anti-oxidant and metal chelator rinse. Coloration Technology, 2006, 122, 49-56.	1.5	17
23	Rheology of polyacrylonitrileâ€based precursor polymers produced from controlled (RAFT) and conventional polymerization: Its role in solution spinning. Journal of Applied Polymer Science, 2016, 133, .	2.6	17
24	The use of ultraviolet radiation in an adsorbable organohalogen-free print preparation for wool and in wool dyeing: the Siroflash process. Coloration Technology, 2008, 114, 286-292.	0.1	16
25	Chemiluminescence from thermal oxidation of amino acids and proteins. Amino Acids, 2010, 38, 1395-1405.	2.7	15
26	Detecting free radicals in sunscreens exposed to UVA radiation using chemiluminescence. Journal of Photochemistry and Photobiology B: Biology, 2014, 133, 27-38.	3.8	15
27	UV protection performance of textiles affected by fiber cross-sectional shape. Textile Reseach Journal, 2015, 85, 1946-1960.	2.2	15
28	Photoproducts Formed in the Photoyellowing of Collagen in the Presence of a Fluorescent Whitening Agent. Photochemistry and Photobiology, 2009, 85, 1314-1321.	2.5	14
29	The infrared spectra of matrix isolated thorium and uranium tetrachlorides. Change of shape with matrix gas. Journal of the Chemical Society Dalton Transactions, 1988, , 2759.	1.1	13
30	Whiter wool from fleece to fabric. Coloration Technology, 2011, 127, 297-303.	1.5	13
31	Thermal luminescence spectroscopy of γ-irradiated elastomers using a multichannel Fourier-transform chemiluminescence spectrometer. Polymer Journal, 2012, 44, 1015-1021.	2.7	12
32	Biodegradable mulch fabric by surface fibrillation and entanglement of plant fibers. Textile Reseach Journal, 2013, 83, 1906-1917.	2.2	12
33	Measuring colour and photostability of small fleece wool samples. Animal Production Science, 2010, 50, 589.	1.3	11
34	Sunlight exposure caused yellowing and increased mineral content in wool. Animal Production Science, 2010, 50, 300.	1.3	11
35	Thermal luminescence spectra of polyamides and their Maillard reaction with reducing sugars. Luminescence, 2012, 27, 362-370.	2.9	11
36	Thermal chemiluminescence of fibrous proteins. Polymer Degradation and Stability, 2007, 92, 1504-1512.	5.8	10

KEITH MILLINGTON

#	Article	IF	CITATIONS
37	Kinetics of Photo-Induced Chemiluminescence Decay from Polymers. Polymer Journal, 2009, 41, 1085-1091.	2.7	10
38	The effect of dyes on photo-induced chemiluminescence emission from polymers. Polymer Degradation and Stability, 2010, 95, 34-42.	5.8	10
39	Thermal oxidative degradation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy. Polymer Degradation and Stability, 2013, 98, 2680-2686.	5.8	10
40	A quantitative approach to host–guest interactions for matrix-isolated alkali-metal salts of hexafluoroanions and perchlorates. Journal of the Chemical Society Dalton Transactions, 1987, , 1521-1527.	1.1	9
41	Improving the whiteness and photostability of wool. , 2009, , 217-247.		9
42	Potential for desalination using lower critical solution temperature polymers: Concentration of salt solutions by pluronic PE6200. Journal of Applied Polymer Science, 2009, 113, 2346-2352.	2.6	9
43	Effects of fibre parameters on the ultraviolet protection of fibre assemblies. Journal of the Textile Institute, 2016, 107, 614-624.	1.9	9
44	A limitation of the microtox® test for toxicity measurements of nonionic surfactants. Environmental Toxicology and Chemistry, 1996, 15, 1034-1037.	4.3	7
45	A comparative interlaboratory study on photocatalytic activity of commercial ZnO and CeO2 nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	7
46	Using Chemiluminescence to Study the Photodegradation of Materials. Materials Science Forum, 2010, 654-656, 2414-2417.	0.3	6
47	Thermal chemiluminescence spectroscopy of amino acids and its salts using a multichannel Fourier-transform spectrometer. Chemical Physics Letters, 2012, 523, 113-119.	2.6	6
48	Understanding the influence of fibre, yarn and fabric parameters on UV protection of wool-knitted fabrics. Journal of the Textile Institute, 2017, 108, 1609-1617.	1.9	6
49	Wool as a high-performance fiber. , 2017, , 367-408.		6
50	Anomalous fluorescence of white hair compared to other unpigmented keratin fibres. International Journal of Cosmetic Science, 2020, 42, 289-301.	2.6	6
51	UV damage to hair and the effect of antioxidants and metal chelators. International Journal of Cosmetic Science, 2020, 42, 174-184.	2.6	6
52	Chemiluminescence from UVA–exposed skin: Separating photo-induced chemiluminescence from photophysical light emission. Journal of Photochemistry and Photobiology B: Biology, 2012, 114, 140-146.	3.8	5
53	The influence of copper(<scp>II</scp>) ions on wool photostability in the dry state. Coloration Technology, 2013, 129, 323-329.	1.5	5
54	Trace metals can affect hydroxyl radical production and yellowing of photo-irradiated wool. Journal of the Textile Institute, 2013, 104, 648-654.	1.9	5

KEITH MILLINGTON

#	Article	IF	CITATIONS
55	Improving the photostability of bleached wool without increasing its yellowness. Coloration Technology, 2014, 130, 413-417.	1.5	5
56	The effect of γ-ray irradiation on thermal oxidation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy. Chemical Physics Letters, 2014, 591, 259-264.	2.6	5
57	Thermal chemiluminescence from Î ³ -irradiated polytetrafluoroethylene and its emission mechanism: Investigation by multichannel Fourier-transform luminescence spectroscopy. Chemical Physics Letters, 2014, 614, 181-185.	2.6	5
58	Naked Molecule Chemistry: Different Bonding Modes of CO to FeX2. Angewandte Chemie International Edition in English, 1988, 27, 1161-1162.	4.4	4
59	Degradation mechanism of γ-irradiated polytetrafluoroethylene (PTFE) powder by low-temperature matrix-isolation infrared spectroscopy and chemiluminescence spectroscopy. Polymer Journal, 2016, 48, 697-702.	2.7	4
60	Genetic variation in sulfur, calcium, magnesium, manganese and trace metal content of Merino wool and correlations with brightness, yellowness and photostability. Animal Production Science, 2012, 52, 463.	1.3	4
61	The laser-induced fluorescence spectrum of chromyl fluoride (chromium dioxidedifluoride) in a seeded molecular beam. Chemical Physics Letters, 1984, 108, 138-140.	2.6	3
62	Measurement of light penetration through a simulated Merino fleece. Animal Production Science, 2010, 50, 585.	1.3	3
63	Rapid permanent setting of wool fabrics by conductive heat transfer. Textile Reseach Journal, 2012, 82, 1414-1421.	2.2	3
64	Trace Metals in Fleece Wool and Correlations with Yellowness. Biological Trace Element Research, 2013, 151, 365-372.	3.5	3
65	Thermal chemiluminescence from ^ĵ a-irradiated polytetrafluoroethylene and its emission mechanism: Kinetic analysis and bond dissociation energy of fluoroperoxide group. Chemical Physics Letters, 2014, 616-617, 104-108.	2.6	3
66	Research on the influence of yarn parameters on the ultraviolet protection of yarns. Journal of the Textile Institute, 2016, , 1-13.	1.9	2
67	Colorfastness. , 2018, , 155-186.		2
68	The effects of bleaching on the photostability of white fleece wools. Journal of the Textile Institute, 2013, 104, 655-660.	1.9	1
69	Improving the photostability of bleached silk without reducing its whiteness. Coloration Technology, 2015, 131, 439-443.	1.5	1
70	Chemiluminescence spectral analysis of styrene-butadiene and acrylonitrile-butadiene rubbers using a multichannel Fourier-transform chemiluminescence spectrometer. Polymer Testing, 2015, 43, 44-48.	4.8	1
71	Anomalous Fluorescence of White Hair Compared to Other Unpigmented Keratin Fibres. International Journal of Cosmetic Science, 2019, , .	2.6	1
72	Mechanism of photoprotection of wool with formaldehyde and thiol derivatives. Coloration Technology, 2009, 125, 117-122.	1.5	0