List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9130233/publications.pdf Version: 2024-02-01

		10389	17105
282	17,819	72	122
papers	citations	h-index	g-index
287	287	287	9790
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. ELife, 2022, 11, .	6.0	19
2	Giardia duodenalis cysteine proteases cleave proteinase-activated receptor-2 to regulate intestinal goblet cell mucin gene expression. International Journal for Parasitology, 2022, 52, 285-292.	3.1	7
3	The innate immune response, microenvironment proteinases, and the COVID-19 pandemic: pathophysiologic mechanisms and emerging therapeutic targets. Kidney International Supplements, 2022, 12, 48-62.	14.2	10
4	Identification of ligand linkage vectors for the development of p300/CBP degraders. RSC Medicinal Chemistry, 2022, 13, 726-730.	3.9	4
5	Metformin downâ€regulates TGF beta signal transduction and production of PAR2 Nâ€terminus cleaving protease activity in an NR4a1 dependent manner in a PC3 prostate cancer cell line. FASEB Journal, 2022, 36, .	0.5	1
6	PAR2, not PAR1, regulates endotheliumâ€dependent vascular tone in resistance arteries. FASEB Journal, 2022, 36, .	0.5	0
7	Dihydromyricetin protects against high glucose-induced endothelial dysfunction: Role of HIF-1α/ROR2/NF-ĨºB. Biomedicine and Pharmacotherapy, 2022, 153, 113308.	5.6	10
8	Does conventional early life academic excellence predict later life scientific discovery? An assessment of the lives of great medical innovators. QJM - Monthly Journal of the Association of Physicians, 2021, 114, 381-389.	0.5	0
9	Increased Mucosal Thrombin is Associated with Crohn's Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. Journal of Crohn's and Colitis, 2021, 15, 787-799.	1.3	19
10	Legumain Induces Oral Cancer Pain by Biased Agonism of Protease-Activated Receptor-2. Journal of Neuroscience, 2021, 41, 193-210.	3.6	32
11	The RGS-RhoGEFs control the amplitude of YAP1 activation by serum. Scientific Reports, 2021, 11, 2348.	3.3	1
12	Receptors Proteinase-Activated Receptors. , 2021, , 254-262.		0
13	Microglial cell secretion of serpinâ€like trypsinâ€inhibitory activity: potential regulation of proteinaseâ€activated receptorâ€2 (PAR2)â€mediated inflammatory signalling. FASEB Journal, 2021, 35, .	0.5	0
14	Proteolytic Signal Crosstalk in the Prostate Cancer Microenvironment: PC3 Cell Metalloproteinases and Autocrineâ€paracrineâ€fibroblast Regulation of Proteinaseâ€activated Receptors (PARs). FASEB Journal, 2021, 35, .	0.5	0
15	Metformin Prevents Hyperglycemia-Associated, Oxidative Stress-Induced Vascular Endothelial Dysfunction: Essential Role for the Orphan Nuclear Receptor Human Nuclear Receptor 4A1 (Nur77). Molecular Pharmacology, 2021, 100, 428-455.	2.3	17
16	A KLK4 proteinase substrate capture approach to antagonize PAR1. Scientific Reports, 2021, 11, 16170.	3.3	0
17	A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Frontiers in Endocrinology, 2021, 12, 718942.	3.5	107
18	Oxytocin: much more than childbirth and milk letdown. Clinical Science, 2021, 135, 2121-2126.	4.3	0

#	Article	IF	CITATIONS
19	Physician Scientists Of Yesterday, Today And Tomorrow — Published 44(3) September 2021. Clinical and Investigative Medicine, 2021, 44, E80-81.	0.6	0
20	Platelet-Mediated NET Release Amplifies Coagulopathy and Drives Lung Pathology During Severe Influenza Infection. Frontiers in Immunology, 2021, 12, 772859.	4.8	22
21	Cathelicidin-mediated lipopolysaccharide signaling via intracellular TLR4 in colonic epithelial cells evokes CXCL8 production. Gut Microbes, 2020, 12, 1785802.	9.8	17
22	Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Canadian Journal of Physiology and Pharmacology, 2020, 98, 415-430.	1.4	36
23	Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Frontiers in Immunology, 2020, 11, 629726.	4.8	8
24	Can a virtual on-line nation-wide mentorship-matching process meet the need?. Clinical and Investigative Medicine, 2020, 43, E39-E40.	0.6	0
25	RAC1B Suppresses TGF-β-Dependent Chemokinesis and Growth Inhibition through an Autoregulatory Feed-Forward Loop Involving PAR2 and ALK5. Cancers, 2019, 11, 1211.	3.7	6
26	Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nature Communications, 2019, 10, 3224.	12.8	39
27	HIV-induced neuroinflammation: impact of PAR1 and PAR2 processing by Furin. Cell Death and Differentiation, 2019, 26, 1942-1954.	11.2	11
28	The pregnane X receptor and its microbiota-derived ligand indole 3-propionic acid regulate endothelium-dependent vasodilation. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E350-E361.	3.5	47
29	Protease-Activated Receptor 2 Agonist as Adjuvant: Augmenting Development of Protective Memory CD8 T Cell Responses Induced by Influenza Virosomes. Journal of Immunology, 2019, 203, 441-452.	0.8	8
30	RAC1B Suppresses TGF-β1-Dependent Cell Migration in Pancreatic Carcinoma Cells through Inhibition of the TGF-β Type I Receptor ALK5. Cancers, 2019, 11, 691.	3.7	16
31	PAR2-Mediated cAMP Generation Suppresses TRPV4-Dependent Ca2+ Signaling in Alveolar Macrophages to Resolve TLR4-Induced Inflammation. Cell Reports, 2019, 27, 793-805.e4.	6.4	52
32	Minimizing Hyperglycemia-Induced Vascular Endothelial Dysfunction by Inhibiting Endothelial Sodium-Glucose Cotransporter 2 and Attenuating Oxidative Stress: Implications for Treating Individuals With Type 2 Diabetes. Canadian Journal of Diabetes, 2019, 43, 510-514.	0.8	23
33	TRPV1 promotes opioid analgesia during inflammation. Science Signaling, 2019, 12, .	3.6	26
34	Giardia â€Induced Alterations to Intestinal Mucus Production Involve Proteaseâ€Activated Receptorâ€2â€Mediated Activation of MAPK and Calcium Release. FASEB Journal, 2019, 33, 38.10.	0.5	2
35	Proteinases and their receptors in inflammatory arthritis: an overview. Nature Reviews Rheumatology, 2018, 14, 170-180.	8.0	45
36	Protease-Activated Receptor 2 Facilitates Bacterial Dissemination in Pneumococcal Pneumonia. Journal of Infectious Diseases, 2018, 217, 1462-1471.	4.0	11

#	Article	IF	CITATIONS
37	Heat shock proteinâ€27 and sexâ€selective regulation of muscarinic and proteinaseâ€activated receptor 2â€mediated vasodilatation: differential sensitivity to endothelial NOS inhibition. British Journal of Pharmacology, 2018, 175, 2063-2076.	5.4	8
38	Protease-activated receptor-2 signaling through Î ² -arrestin-2 mediates <i>Alternaria</i> alkaline serine protease-induced airway inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L1042-L1057.	2.9	25
39	Itch induced by peripheral mu opioid receptors is dependent on TRPV1-expressing neurons and alleviated by channel activation. Scientific Reports, 2018, 8, 15551.	3.3	27
40	Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease. Scientific Reports, 2018, 8, 7834.	3.3	67
41	Shear stress sensitizes TRPV4 in endothelium-dependent vasodilatation. Pharmacological Research, 2018, 133, 152-159.	7.1	29
42	Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha _{2A} -Adrenoceptors In Vitro. , 2018, 59, 2778.		45
43	Interferon gamma decreases intestinal epithelial aquaporin 3 expression through downregulation of constitutive transcription. Journal of Molecular Medicine, 2018, 96, 1081-1093.	3.9	7
44	Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascular Pharmacology, 2018, 109, 56-71.	2.1	84
45	Microenvironment proteinases, proteinase-activated receptor regulation, cancer and inflammation. Biological Chemistry, 2018, 399, 1023-1039.	2.5	18
46	Protease Activated Receptorâ€2 Mediates <i>Giardia</i> â€Induced Disruptions of the Intestinal Mucus Barrier. FASEB Journal, 2018, 32, 286.11.	0.5	1
47	Protease activated receptor 2 deficiency in alveolar macrophages impairs cAMP generation leading to NFATâ€dependent proâ€inflammatory signalling and lung injury. FASEB Journal, 2018, 32, 746.6.	0.5	0
48	Targeting a Proteinase-Activated Receptor 4 (PAR4) Carboxyl Terminal Motif to Regulate Platelet Function. Molecular Pharmacology, 2017, 91, 287-295.	2.3	23
49	Insights into cellular signalling by G protein coupled receptor transactivation of cell surface protein kinase receptors. Journal of Cell Communication and Signaling, 2017, 11, 117-125.	3.4	21
50	Career and research outcomes of the physician-scientist training program at the University of Calgary: a retrospective cohort study. CMAJ Open, 2017, 5, E395-E401.	2.4	5
51	Cockroach allergen serine proteinases: Isolation, sequencing and signalling via proteinaseâ€activated receptorâ€2. Clinical and Experimental Allergy, 2017, 47, 946-960.	2.9	16
52	Granulocyte-colony–stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11235-11240.	7.1	39
53	Bioactive Extracellular Matrix Scaffold Promotes Adaptive Cardiac Remodeling and Repair. JACC Basic To Translational Science, 2017, 2, 450-464.	4.1	43
54	Tumor necrosis factor <i>α</i> decreases aquaporin 3 expression in intestinal epithelial cells through inhibition of constitutive transcription. Physiological Reports, 2017, 5, e13451.	1.7	23

#	Article	IF	CITATIONS
55	Transforming Growth Factor- <i>β</i> 1/Activin Receptor-like Kinase 5-Mediated Cell Migration is Dependent on the Protein Proteinase-Activated Receptor 2 but not on Proteinase-Activated Receptor 2-Stimulated G _q -Calcium Signaling. Molecular Pharmacology, 2017, 92, 519-532.	2.3	11
56	Integrating the GPCR transactivationâ€dependent and biased signalling paradigms in the context of PAR1 signalling. British Journal of Pharmacology, 2016, 173, 2992-3000.	5.4	12
57	Lost: Young Canadian physician-scientists need a map. Science Translational Medicine, 2016, 8, 329fs6.	12.4	5
58	Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacological Reviews, 2016, 68, 1110-1142.	16.0	53
59	Thrombin Cleavage of Plasmodium falciparum Erythrocyte Membrane Protein 1 Inhibits Cytoadherence. MBio, 2016, 7, .	4.1	9
60	Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling. Molecular Pharmacology, 2016, 89, 606-614.	2.3	75
61	Protease activated receptor-1 mediated dual kinase receptor transactivation stimulates the expression of glycosaminoglycan synthesizing genes. Cellular Signalling, 2016, 28, 110-119.	3.6	36
62	Protease-Activated Receptors. , 2016, , 1124-1144.		0
63	<scp>GPCR</scp> â€mediated <scp>EGF</scp> receptor transactivation regulates <scp>TRPV</scp> 4 action in the vasculature. British Journal of Pharmacology, 2015, 172, 2493-2506.	5.4	49
64	Proteinases, their receptors and inflammatory signalling: the <scp>O</scp> xford <scp>S</scp> outh <scp>P</scp> arks <scp>R</scp> oad connection. British Journal of Pharmacology, 2015, 172, 3196-3211.	5.4	2
65	Functional inhibition of <scp>PAR</scp> ₂ alleviates allergenâ€induced airway hyperresponsiveness and inflammation. Clinical and Experimental Allergy, 2015, 45, 1844-1855.	2.9	51
66	Neuroinflammation-Induced Interactions between Protease-Activated Receptor 1 and Proprotein Convertases in HIV-Associated Neurocognitive Disorder. Molecular and Cellular Biology, 2015, 35, 3684-3700.	2.3	29
67	Vitamin D, the autonomic nervous system, and cardiovascular risk. Physiological Reports, 2015, 3, e12349.	1.7	13
68	Proteinase-activated Receptor 2 (PAR2) Decreases Apoptosis in Colonic Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 34366-34377.	3.4	45
69	Tulathromycin Exerts Proresolving Effects in Bovine Neutrophils by Inhibiting Phospholipases and Altering Leukotriene B ₄ , Prostaglandin E ₂ , and Lipoxin A ₄ Production. Antimicrobial Agents and Chemotherapy, 2014, 58, 4298-4307.	3.2	16
70	Proteolytic Activation of the Human Epithelial Sodium Channel by Trypsin IV and Trypsin I Involves Distinct Cleavage Sites. Journal of Biological Chemistry, 2014, 289, 19067-19078.	3.4	31
71	Biased signalling and proteinaseâ€activated receptors (<scp>PAR</scp> s): targeting inflammatory disease. British Journal of Pharmacology, 2014, 171, 1180-1194.	5.4	153
72	Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis. Nature Medicine, 2014, 20, 1165-1173.	30.7	65

#	Article	IF	CITATIONS
73	Proteinaseâ€activated receptors 1 and 2 and the regulation of porcine coronary artery contractility: a role for distinct tyrosine kinase pathways. British Journal of Pharmacology, 2014, 171, 2413-2425.	5.4	10
74	KLKs and their hormone-like signaling actions: a new life for the PSA-KLK family. Biological Chemistry, 2014, 395, 915-929.	2.5	14
75	Protease-Activated Receptors. , 2014, , 1-23.		0
76	Shear stress increases vasodilator sensitivity to the TRPV4 agonist GSK10167904 in rat cremaster arterioles (LB566). FASEB Journal, 2014, 28, LB566.	0.5	0
77	Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Communication and Signaling, 2013, 11, 86.	6.5	150
78	Implantation serine proteinase 2 is a monomeric enzyme with mixed serine proteolytic activity and can silence signalling via proteinase activated receptors. Biochemistry and Cell Biology, 2013, 91, 487-497.	2.0	1
79	Neutrophil Elastase and Proteinase-3 Trigger G Protein-biased Signaling through Proteinase-activated Receptor-1 (PAR1). Journal of Biological Chemistry, 2013, 288, 32979-32990.	3.4	98
80	Proteinase-Activated Receptor-1 and Immunomodulatory Effects of a PAR1-Activating Peptide in a Mouse Model of Prostatitis. Mediators of Inflammation, 2013, 2013, 1-12.	3.0	4
81	Induction of Complement C3a Receptor Responses by Kallikrein-Related Peptidase 14. Journal of Immunology, 2013, 191, 3858-3866.	0.8	24
82	Proteinase-activated Receptor-2 Transactivation of Epidermal Growth Factor Receptor and Transforming Growth Factor-β Receptor Signaling Pathways Contributes to Renal Fibrosis. Journal of Biological Chemistry, 2013, 288, 37319-37331.	3.4	74
83	Cockroach Allergen Proteinases Regulate Proteinaseâ€Activated Receptorâ€1 (PAR1) Signalling. FASEB Journal, 2013, 27, 1171.6.	0.5	0
84	Proteinaseâ€activated receptors, PAR1 & PAR2, regulate porcine coronary contractility via tyrosine kinaseâ€MAPKinase signaling involving a cyclooxygenase (COX)â€1 product. FASEB Journal, 2013, 27, 880.2.	0.5	0
85	Biased signaling by proteinaseâ€activated receptor 1 (PAR1) via activation with neutrophil and cockroach serine proteinases: tracking of distinct receptor dynamics with dual fluorochrome tagged receptors. FASEB Journal, 2013, 27, .	0.5	0
86	Cleavage of interleukinâ€8 and attenuation of neutrophil chemotaxis by a Giardia cathepsin B. FASEB Journal, 2013, 27, 131.8.	0.5	0
87	Epidermal growth factor receptor transactivation is required for proteinase-activated receptor-2-induced COX-2 expression in intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2012, 303, G111-G119.	3.4	22
88	β-Arrestin-2 mediates the proinflammatory effects of proteinase-activated receptor-2 in the airway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16660-16665.	7.1	76
89	Kallikrein-related peptidase signaling in colon carcinoma cells: targeting proteinase-activated receptors. Biological Chemistry, 2012, 393, 413-420.	2.5	24
90	Targeting proteinase-activated receptors: therapeutic potential and challenges. Nature Reviews Drug Discovery, 2012, 11, 69-86.	46.4	272

#	Article	IF	CITATIONS
91	Proteinase-activated receptors (PARs): differential signalling by kallikrein-related peptidases KLK8 and KLK14. Biological Chemistry, 2012, 393, 421-427.	2.5	18
92	Activation of <scp>PAR</scp> ₂ receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint. British Journal of Pharmacology, 2012, 167, 1665-1678.	5.4	25
93	Novel insights into the delayed vasospasm following subarachnoid haemorrhage: importance of proteinase signalling. British Journal of Pharmacology, 2012, 165, 103-105.	5.4	3
94	Interleukinâ€17†and proteaseâ€activated receptor 2â€mediated production of CXCL1 and CXCL8 modulated b cyclosporine A, vitamin D ₃ and glucocorticoids in human keratinocytes. Journal of Dermatology, 2012, 39, 625-631.	y 1.2	18
95	Allergic sensitization enhances anion current responsiveness of murine trachea to PAR-2 activation. Pflugers Archiv European Journal of Physiology, 2012, 463, 497-509.	2.8	17
96	Proteinase-Activated Receptors (PARs) and Calcium Signaling in Cancer. Advances in Experimental Medicine and Biology, 2012, 740, 979-1000.	1.6	16
97	Mentors And The Butterfly Effect: Triggers For Discovering Signalling by Proteinases via Proteinase-Activated Receptors (PARs) And More. Clinical and Investigative Medicine, 2012, 35, 378.	0.6	0
98	Pathogenesis of renal fibrosis: Role of Proteinaseâ€activated Receptorâ€2. FASEB Journal, 2012, 26, 1051.16.	0.5	0
99	Allergenâ€derived proteinases: Isolation, characterization and signaling via proteinaseâ€activated receptors (PARs). FASEB Journal, 2012, 26, 664.10.	0.5	2
100	A Giardia Cathepsinâ€Bâ€like Protease Cleaves Interleukinâ€8 From Intestinal Epithelial Cells. FASEB Journal, 2012, 26, 56.5.	0.5	0
101	Kallikrein-Related Peptidase 14 Acts on Proteinase-Activated Receptor 2 to Induce Signaling Pathway in Colon Cancer Cells. American Journal of Pathology, 2011, 179, 2625-2636.	3.8	47
102	Implantation Serine Proteinase 1 Exhibits Mixed Substrate Specificity that Silences Signaling via Proteinase-Activated Receptors. PLoS ONE, 2011, 6, e27888.	2.5	7
103	Role of proteinaseâ€activated receptorâ€2 in antiâ€bacterial and immunomodulatory effects of interferonâ€Î³ on human neutrophils and monocytes. Immunology, 2011, 133, 329-339.	4.4	12
104	Perivascular adipose tissue-derived relaxing factors: release by peptide agonists via proteinase-activated receptor-2 (PAR2) and non-PAR2 mechanisms. British Journal of Pharmacology, 2011, 164, 1990-2002.	5.4	17
105	Structure, function and pathophysiology of protease activated receptors. , 2011, 130, 248-282.		315
106	Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS. Brain, 2011, 134, 3209-3221.	7.6	26
107	Neutrophil Elastase Acts as a Biased Agonist for Proteinase-activated Receptor-2 (PAR2). Journal of Biological Chemistry, 2011, 286, 24638-24648.	3.4	142
108	The active Zot domain (aa 288–293) increases ZOâ€1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZOâ€1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB Journal, 2011, 25, 144-158.	0.5	82

#	Article	IF	CITATIONS
109	Mucosal Allergic Sensitization to Cockroach Allergens Is Dependent on Proteinase Activity and Proteinase-Activated Receptor-2 Activation. Journal of Immunology, 2011, 186, 3164-3172.	0.8	87
110	Proteolytic Enzymes and Cell Signaling: Pharmacological Lessons. , 2011, , 1-25.		0
111	Abnormal overexpression of mastocytes in skin biopsies of fibromyalgia patients. Clinical Rheumatology, 2010, 29, 1403-1412.	2.2	75
112	Design, synthesis and biological evaluation of non-peptide PAR1 thrombin receptor antagonists based on small bifunctional templates: arginine and phenylalanine side chain groups are keys for receptor activity. Amino Acids, 2010, 38, 985-990.	2.7	1
113	Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine. International Journal of Radiation Oncology Biology Physics, 2010, 77, 1206-1212.	0.8	6
114	Proteinaseâ€activated receptorâ€⊋ (PAR ₂) and mouse osteoblasts: Regulation of cell function and lack of specificity of PAR ₂ â€activating peptides. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 328-336.	1.9	15
115	Insulin Modulates Protease-Activated Receptor 2 Signaling: Implications for the Innate Immune Response. Journal of Immunology, 2010, 184, 2702-2709.	0.8	20
116	Functional proteomics of kallikrein-related peptidases in ovarian cancer ascites fluid. Biological Chemistry, 2010, 391, 381-90.	2.5	27
117	Kallikrein-related peptidases: proteolysis and signaling in cancer, the new frontier. Biological Chemistry, 2010, 391, 299-310.	2.5	65
118	Getting the message across: Pathophysiology and signaling via receptors for polypeptide hormones and proteinases. Clinical and Investigative Medicine, 2010, 33, 133.	0.6	7
119	CUX1 Transcription Factor Is a Downstream Effector of the Proteinase-activated Receptor 2 (PAR2). Journal of Biological Chemistry, 2009, 284, 36-45.	3.4	16
120	Agonist-Biased Signaling via Proteinase Activated Receptor-2: Differential Activation of Calcium and Mitogen-Activated Protein Kinase Pathways. Molecular Pharmacology, 2009, 76, 791-801.	2.3	96
121	Relative Importance of Proteinase-Activated Receptor-1 Versus Matrix Metalloproteinases in Intracerebral Hemorrhage-Mediated Neurotoxicity in Mice. Stroke, 2009, 40, 2199-2204.	2.0	52
122	Urotensin l–CRF–Urocortins: A mermaid's tail. General and Comparative Endocrinology, 2009, 164, 7-14.	1.8	8
123	Thrombin: To PAR or Not to PAR, and the Regulation of Inflammation. , 2009, , 19-46.		1
124	Proteinases, proteinase-activated receptors (PARs) and the pathophysiology of cancer and diseases of the cardiovascular, musculoskeletal, nervous and gastrointestinal systems. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 377-392.	3.0	27
125	Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. British Journal of Pharmacology, 2008, 153, S263-82.	5.4	256
126	Kallikreins and proteinase-mediated signaling: proteinase-activated receptors (PARs) and the pathophysiology of inflammatory diseases and cancer. Biological Chemistry, 2008, 389, 643-651.	2.5	50

#	Article	IF	CITATIONS
127	Derivatized 2-Furoyl-LIGRLO-amide, a Versatile and Selective Probe for Proteinase-Activated Receptor 2: Binding and Visualization. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 453-462.	2.5	37
128	EGF receptor transactivation and MAP kinase mediate proteinase-activated receptor-2-induced chloride secretion in intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2008, 294, G441-G451.	3.4	38
129	Analysis of Proteinase-activated Receptor 2 and TLR4 Signal Transduction. Journal of Biological Chemistry, 2008, 283, 24314-24325.	3.4	122
130	Agonists of Proteinase-Activated Receptor-2 Enhance IFN-Î ³ -Inducible Effects on Human Monocytes: Role in Influenza A Infection. Journal of Immunology, 2008, 180, 6903-6910.	0.8	21
131	Proteinases as hormones: targets and mechanisms for proteolytic signaling. Biological Chemistry, 2008, .	2.5	0
132	Proteinase-Activated Receptor-2 Promotes Allergic Sensitization to an Inhaled Antigen through a TNF-Mediated Pathway. Journal of Immunology, 2007, 179, 2910-2917.	0.8	81
133	Proteinase-activated receptor-2 activating peptides: distinct canine coronary artery receptor systems. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3279-H3289.	3.2	3
134	Kallikrein-mediated activation of PARs in inflammation and nociception. Inflammation Research, 2007, 56, S499-S502.	4.0	5
135	Thrombin-mediated hepatocellular carcinoma cell migration: Cooperative action via proteinase-activated receptors 1 and 4. Journal of Cellular Physiology, 2007, 211, 699-707.	4.1	60
136	Agonists of proteinaseâ€activated receptorâ€⊋ affect transendothelial migration and apoptosis of human neutrophils. Experimental Dermatology, 2007, 16, 799-806.	2.9	28
137	Trypsin IV or Mesotrypsin and p23 Cleave Protease-activated Receptors 1 and 2 to Induce Inflammation and Hyperalgesia. Journal of Biological Chemistry, 2007, 282, 26089-26100.	3.4	92
138	PAR2 Proteinase-Activated Receptor. , 2007, , 1-13.		0
139	Proteinase-Activated Receptors. , 2007, , 1-12.		1
140	PAR4 Proteinase-Activated Receptor. , 2007, , 1-15.		0
141	PAR1 Proteinase-Activated Receptor. , 2007, , 1-18.		0
142	PAR3 Proteinase-Activated Receptor. , 2007, , 1-13.		0
143	Combination of Thrombin and Matrix Metalloproteinase-9 Exacerbates Neurotoxicity in Cell Culture and Intracerebral Hemorrhage in Mice. Journal of Neuroscience, 2006, 26, 10281-10291.	3.6	106
144	Surfactant as an Airway Smooth Muscle Relaxant. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 609-615.	2.9	26

#	Article	IF	CITATIONS
145	Therapeutic Promise of Proteinase-Activated Receptor-2 Antagonism in Joint Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1017-1024.	2.5	175
146	Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Experimental Medicine, 2006, 203, 425-435.	8.5	145
147	Proteinase-mediated cell signalling: targeting proteinase-activated receptors (PARs) by kallikreins and more. Biological Chemistry, 2006, 387, 677-685.	2.5	71
148	Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biological Chemistry, 2006, 387, 817-24.	2.5	97
149	The House Dust Mite Allergen Der p 1, Unlike Der p 3, Stimulates the Expression of Interleukin-8 in Human Airway Epithelial Cells via a Proteinase-activated Receptor-2-independent Mechanism. Journal of Biological Chemistry, 2006, 281, 6910-6923.	3.4	147
150	Proteinase-activated Receptors, Targets for Kallikrein Signaling. Journal of Biological Chemistry, 2006, 281, 32095-32112.	3.4	217
151	Proteolytic processing of SDF-1Â reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19182-19187.	7.1	97
152	Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs): Proteinases as Hormone-Like Signal Messengers: PARs and More. Journal of Pharmacological Sciences, 2005, 97, 8-13.	2.5	35
153	Neutrophils and the kallikrein–kinin system in proteinaseâ€activated receptor 4â€mediated inflammation in rodents. British Journal of Pharmacology, 2005, 146, 670-678.	5.4	83
154	Redundant signaling mechanisms contribute to the vasodilatory response of the afferent arteriole to proteinase-activated receptor-2. American Journal of Physiology - Renal Physiology, 2005, 288, F65-F75.	2.7	24
155	Expression of proteinase-activated receptor 2 on human primary gastrointestinal myofibroblasts and stimulation of prostaglandin synthesis. Canadian Journal of Physiology and Pharmacology, 2005, 83, 605-616.	1.4	20
156	Activation of proteinase-activated receptor-1 inhibits neurally evoked chloride secretion in the mouse colon in vitro. American Journal of Physiology - Renal Physiology, 2005, 288, G337-G345.	3.4	32
157	Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 216-220.	7.1	248
158	<i>Pseudomonas aeruginosa</i> Elastase Disables Proteinase-Activated Receptor 2 in Respiratory Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 411-419.	2.9	120
159	High Expression of Pulmonary Proteinase-activated Receptor 2 in Acute and Chronic Lung Injury in Preterm Infants. Pediatric Research, 2005, 57, 831-836.	2.3	41
160	Proteinase-Activated Receptor-1 Mediates Elastase-Induced Apoptosis of Human Lung Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 231-247.	2.9	125
161	Proteinase-Activated Receptors: Transducers of Proteinase-Mediated Signaling in Inflammation and Immune Response. Endocrine Reviews, 2005, 26, 1-43.	20.1	469
162	Proteinase-Activated Receptor-2 Induction by Neuroinflammation Prevents Neuronal Death during HIV Infection. Journal of Immunology, 2005, 174, 7320-7329.	0.8	92

#	Article	IF	CITATIONS
163	A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8363-8368.	7.1	163
164	Signal Transduction for Proteinase-Activated Receptor-2-Triggered Prostaglandin E2 Formation in Human Lung Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 576-589.	2.5	49
165	Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma. Human Pathology, 2005, 36, 676-685.	2.0	67
166	Proteinase-activated receptor 2 activation in the airways enhances antigen-mediated airway inflammation and airway hyperresponsiveness through different pathways. Journal of Allergy and Clinical Immunology, 2005, 115, 623-630.	2.9	107
167	Proteinases as hormone-like signal messengers. Swiss Medical Weekly, 2005, 135, 425-32.	1.6	10
168	2-Furoyl-LIGRLO-amide: A Potent and Selective Proteinase-Activated Receptor 2 Agonist. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1124-1131.	2.5	128
169	Proteinase-Activated Receptor-2: Key Role of Amino-Terminal Dipeptide Residues of the Tethered Ligand for Receptor Activation. Molecular Pharmacology, 2004, 65, 149-156.	2.3	39
170	Evidence that protease activated receptor 2 expression is enhanced in human coronary atherosclerotic lesions. Journal of Clinical Pathology, 2004, 57, 513-516.	2.0	43
171	Proteinase-Activated Receptor-2-Mediated Relaxation in Mouse Tracheal and Bronchial Smooth Muscle: Signal Transduction Mechanisms and Distinct Agonist Sensitivity. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 402-410.	2.5	37
172	Tethered ligand-derived peptides of proteinase-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells. Immunology, 2004, 112, 183-190.	4.4	59
173	Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. British Journal of Pharmacology, 2004, 143, 443-454.	5.4	106
174	Proteinase-activated receptor 2 activation modulates guinea-pig mesenteric lymphatic vessel pacemaker potential and contractile activity. Journal of Physiology, 2004, 560, 563-576.	2.9	28
175	The role of the C-terminal tail in protease-activated receptor-2-mediated Ca2+ signalling, proline-rich tyrosine kinase-2 activation, and mitogen-activated protein kinase activity. Cellular Signalling, 2004, 16, 21-29.	3.6	41
176	Hyperpolarization of murine small caliber mesenteric arteries by activation of endothelial proteinase-activated receptor 2. Canadian Journal of Physiology and Pharmacology, 2004, 82, 1103-1112.	1.4	35
177	A role for proteinase-activated receptor–1 in inflammatory bowel diseases. Journal of Clinical Investigation, 2004, 114, 1444-1456.	8.2	82
178	Proteinase-Activated Receptors. , 2004, , 543-548.		0
179	Proteinase-activated receptors (PARs): An evolving hormonal system. Drug Development Research, 2003, 59, 334-335.	2.9	1
180	Proteinase-activated receptors: Tethered ligands and receptor-activating peptides. Drug Development Research, 2003, 59, 336-343.	2.9	7

#	Article	IF	CITATIONS
181	Proteinase-activated receptor domains and signaling. Drug Development Research, 2003, 59, 344-349.	2.9	5
182	Proteinase-activated receptors (PARs) and the kidney. Drug Development Research, 2003, 60, 36-42.	2.9	6
183	Proteinase-activated receptors in the nervous system. Nature Reviews Neuroscience, 2003, 4, 981-990.	10.2	123
184	Proteinase-mediated signaling: Proteinase-activated receptors (PARs) and much more. Life Sciences, 2003, 74, 237-246.	4.3	41
185	Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Canadian Journal of Physiology and Pharmacology, 2003, 81, 920-927.	1.4	81
186	Selective Tryptic Cleavage at the Tethered Ligand Site of the Amino Terminal Domain of Proteinase-Activated Receptor-2 in Intact Cells. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1120-1128.	2.5	17
187	Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11104-11109.	7.1	130
188	Proteinase-Activated Receptor-2 and Human Lung Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 339-346.	2.9	122
189	Up-Regulation of Proteinase-Activated Receptor 1 Expression in Astrocytes During HIV Encephalitis. Journal of Immunology, 2003, 170, 2638-2646.	0.8	115
190	The Endothelium in Health and Disease-A Target for Therapeutic Intervention Journal of Smooth Muscle Research, 2003, 39, 249-267.	1.2	90
191	PAR1-dependent and independent increases in COX-2 and PGE2in human colonic myofibroblasts stimulated by thrombin. American Journal of Physiology - Cell Physiology, 2003, 284, C1185-C1192.	4.6	29
192	Bidirectional regulation of renal hemodynamics by activation of PAR ₁ and PAR ₂ in isolated perfused rat kidney. American Journal of Physiology - Renal Physiology, 2003, 285, F95-F104.	2.7	49
193	Modified Proteinase-Activated Receptor-1 and -2 Derived Peptides Inhibit Proteinase-Activated Receptor-2 Activation by Trypsin. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 702-708.	2.5	64
194	Proteinase-Activated Receptor 2: Differential Activation of the Receptor by Tethered Ligand and Soluble Peptide Analogs. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 1046-1054.	2.5	47
195	Restricted ability of human mast cell tryptase to activate proteinase-activated receptor-2 in rat aorta. Canadian Journal of Physiology and Pharmacology, 2002, 80, 987-992.	1.4	28
196	Proteinase-Activated Receptor (PAR)-1 and -2 Agonists Induce Mediator Release from Mast Cells by Pathways Distinct from PAR-1 and PAR-2. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 466-474.	2.5	62
197	Activation of proteinaseâ€activated receptor 1 stimulates epithelial chloride secretion through a unique MAP kinaseâ€and cycloâ€oxygenaseâ€dependent pathway. FASEB Journal, 2002, 16, 1515-1525.	0.5	48
198	Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers. Thorax, 2002, 57, 146-151.	5.6	63

#	Article	IF	CITATIONS
199	Proteinase-Activated Receptor-2 (PAR2): Vascular Effects of a PAR2-Derived Activating Peptide via a Receptor Different than PAR2. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 985-992.	2.5	36
200	PAR-2 elicits afferent arteriolar vasodilation by NO-dependent and NO-independent actions. American Journal of Physiology - Renal Physiology, 2002, 282, F891-F897.	2.7	22
201	Glycosylation of human proteinase-activated receptor-2 (hPAR2): role in cell surface expression and signalling. Biochemical Journal, 2002, 368, 495-505.	3.7	106
202	Induction of Intestinal Inflammation in Mouse by Activation of Proteinase-Activated Receptor-2. American Journal of Pathology, 2002, 161, 1903-1915.	3.8	342
203	International Union of Pharmacology. XXVIII. Proteinase-Activated Receptors. Pharmacological Reviews, 2002, 54, 203-217.	16.0	395
204	<i>PARs in the stars: proteinase-activated receptors and astrocyte function.</i> Focus on "Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways― American Journal of Physiology - Cell Physiology, 2002, 283, C1347-C1350.	4.6	16
205	Multiple mechanisms of vascular smooth muscle relaxation by the activation of Proteinase-Activated Receptor 2 in mouse mesenteric arterioles. British Journal of Pharmacology, 2002, 135, 155-169.	5.4	76
206	Mechanisms of action of proteinase-activated receptor agonists on human platelets. British Journal of Pharmacology, 2002, 135, 1123-1132.	5.4	67
207	Proteaseâ€activated receptorâ€2 (PARâ€2) in the rat gastric mucosa: immunolocalization and facilitation of pepsin/pepsinogen secretion. British Journal of Pharmacology, 2002, 135, 1292-1296.	5.4	51
208	Airway epithelial cells release eosinophil survival–promoting factors (GM-CSF) after stimulation of proteinase-activated receptor 2. Journal of Allergy and Clinical Immunology, 2001, 107, 679-685.	2.9	104
209	Proteinase-activated receptor 4 (PAR4): activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Canadian Journal of Physiology and Pharmacology, 2001, 79, 439-442.	1.4	64
210	Protease-activated receptors in inflammation, neuronal signaling and pain. Trends in Pharmacological Sciences, 2001, 22, 146-152.	8.7	361
211	Protease-activated receptor-1 stimulates Ca ²⁺ -dependent Cl ^{â^'} secretion in human intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2001, 281, G323-G332.	3.4	73
212	Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63ÂkDa active species. Biochemical Journal, 2001, 357, 107.	3.7	72
213	Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63ÂkDa active species. Biochemical Journal, 2001, 357, 107-115.	3.7	105
214	Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nature Medicine, 2001, 7, 821-826.	30.7	453
215	Contractile actions of proteinase-activated receptor-derived polypeptides in guinea-pig gastric and lung parenchymal strips: evidence for distinct receptor systems. British Journal of Pharmacology, 2001, 132, 556-566.	5.4	25
216	Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. British Journal of Pharmacology, 2001, 133, 975-987.	5.4	125

#	Article	IF	CITATIONS
217	Glycosylation and the activation of proteinaseâ€activated receptor 2 (PAR ₂) by human mast cell tryptase. British Journal of Pharmacology, 2001, 134, 705-718.	5.4	104
218	Thrombin-induced platelet endostatin release is blocked by a proteinase activated receptor-4 (PAR4) antagonist. British Journal of Pharmacology, 2001, 134, 701-704.	5.4	48
219	Endothelinâ€lâ€endothelin receptor type A mediates closure of rat ductus arteriosus at birth. Journal of Physiology, 2001, 537, 579-585.	2.9	22
220	Proteinase-activated receptor 2 is an anti-inflammatory signal for colonic lamina propria lymphocytes in a mouse model of colitis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13936-13941.	7.1	190
221	Proteinase-activated receptor 4 (PAR4): activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Canadian Journal of Physiology and Pharmacology, 2001, 79, 439-42.	1.4	27
222	Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. British Journal of Pharmacology, 2000, 129, 1808-1814.	5.4	88
223	Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L193-L201.	2.9	250
224	Receptor Binding and Agonist Efficacy: New Insights from Mutants of the Thrombin Protease-Activated Receptor-1 (PAR-1). Molecular Pharmacology, 2000, 58, 1175-1177.	2.3	5
225	Interleukin-1l², Src- and non-Src tyrosine kinases, and nitric oxide synthase induction in rat aorta in vitro. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H566-H576.	3.2	12
226	A Polymorphic Protease-activated Receptor 2 (PAR2) Displaying Reduced Sensitivity to Trypsin and Differential Responses to PAR Agonists. Journal of Biological Chemistry, 2000, 275, 39207-39212.	3.4	67
227	Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature Medicine, 2000, 6, 151-158.	30.7	909
228	Proteinase-activated receptor-2–mediated matrix metalloproteinase-9 release from airway epithelial cells. Journal of Allergy and Clinical Immunology, 2000, 106, 537-545.	2.9	154
229	Proteinase-activated receptors (PARs): activation of PAR ₁ and PAR ₂ by a proteolytic fragment of the neuronal growth associated protein B-50/GAP-43. Canadian Journal of Physiology and Pharmacology, 2000, 78, 81-85.	1.4	9
230	Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and â^'2. Journal of Physiology, 1999, 517, 741-756.	2.9	168
231	Pro- and anti-inflammatory actions of thrombin: a distinct role for proteinase-activated receptor-1 (PAR1). British Journal of Pharmacology, 1999, 126, 1262-1268.	5.4	111
232	Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. British Journal of Pharmacology, 1999, 127, 1083-1090.	5.4	209
233	Proteinase activated receptor 2: role of extracellular loop 2 for ligand-mediated activation. British Journal of Pharmacology, 1999, 128, 1105-1113.	5.4	52
234	Proteinase-activated receptor 4 (PAR4): action of PAR4-activating peptides in vascular and gastric tissue and lack of cross-reactivity with PAR1 and PAR2. Canadian Journal of Physiology and Pharmacology, 1999, 77, 458-464.	1.4	57

#	Article	IF	CITATIONS
235	Protease-activated receptors: PAR4 and counting: how long is the course?. Trends in Pharmacological Sciences, 1999, 20, 271-273.	8.7	70
236	Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: activation of PAR2 by PAR1-targeted ligands. Journal of Pharmacology and Experimental Therapeutics, 1999, 288, 358-70.	2.5	174
237	Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands. Journal of Pharmacology and Experimental Therapeutics, 1999, 290, 753-60.	2.5	80
238	Proteinase-activated receptor 4 (PAR4): action of PAR4-activating peptides in vascular and gastric tissue and lack of cross-reactivity with PAR1 and PAR2. Canadian Journal of Physiology and Pharmacology, 1999, 77, 458-64.	1.4	22
239	Dual endothelium-dependent vascular activities of proteinase-activated receptor-2-activating peptides: evidence for receptor heterogeneity. British Journal of Pharmacology, 1998, 123, 1434-1440.	5.4	52
240	Endothelium-dependent contractile actions of proteinase-activated receptor-2-activating peptides in human umbilical vein: release of a contracting factor via a novel receptor. British Journal of Pharmacology, 1998, 125, 1445-1454.	5.4	44
241	Proteinase-activated receptor 2 (PAR2)-activating peptides: Identification of a receptor distinct from PAR2 that regulates intestinal transport. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7766-7771.	7.1	154
242	Parallel contractile signal transduction pathways activated by receptors for thrombin and epidermal growth factor-urogastrone in guinea pig gastric smooth muscle: blockade by inhibitors of mitogen-activated protein kinase-kinase and phosphatidyl inositol 3'-kinase. Journal of Pharmacology and Experimental Therapeutics, 1998, 285, 325-34.	2.5	44
243	Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8884-8889.	7.1	292
244	Proteinase-activated receptors: structural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Canadian Journal of Physiology and Pharmacology, 1997, 75, 832-841.	1.4	211
245	Proteinase-activated receptors: structural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Canadian Journal of Physiology and Pharmacology, 1997, 75, 832-41.	1.4	89
246	Dependence of thrombin receptor-mediated contraction of guinea pig gastric smooth muscle on growth factor signalling pathways: comparison with ECF and implication of a role for Src-family kinases. Proceedings of the Western Pharmacology Society, 1997, 40, 45-8.	0.1	2
247	Rat proteinaseâ€activated receptorâ€2 (PARâ€2): cDNA sequence and activity of receptorâ€derived peptides in gastric and vascular tissue. British Journal of Pharmacology, 1996, 118, 521-530.	5.4	185
248	Protease-mediated signalling: new paradigms for cell regulation and drug development. Trends in Pharmacological Sciences, 1996, 17, 3-6.	8.7	70
249	Synergistic actions of a thrombin-derived synthetic peptide and a thrombin receptor-activating peptide in stimulating fibroblast mitogenesis. , 1996, 169, 491-496.		16
250	Synthesis and activities of cyclic thrombin-receptor-derived peptide analogues of the Ser42-Phe-Leu-Leu-Arg46 motif sequence containing d-Phe and/or d-Arg. International Journal of Peptide Research and Therapeutics, 1996, 3, 233-240.	0.1	4
251	Proteinase-activated receptor-2 in rat aorta: structural requirements for agonist activity of receptor-activating peptides. Molecular Pharmacology, 1996, 49, 229-33.	2.3	66
252	Tyrosine kinase-mediated signal transduction pathways and the actions of polypeptide growth factors and G-protein-coupled agonists in smooth muscle. Molecular and Cellular Biochemistry, 1995, 149-150, 77-85.	3.1	35

#	Article	IF	CITATIONS
253	Contractile actions of thrombin receptorâ€derived polypeptides in human umbilical and placental vasculature: evidence for distinct receptor systems. British Journal of Pharmacology, 1995, 115, 569-578.	5.4	27
254	Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-NH ₂ , in rat vascular and gastric smooth muscle. Canadian Journal of Physiology and Pharmacology, 1995, 73, 1203-1207.	1.4	154
255	Vascular actions of thrombin receptorâ€derived polypeptides: structureâ€activity profiles for contractile and relaxant effects in rat aorta. British Journal of Pharmacology, 1995, 114, 1680-1686.	5.4	46
256	Contractile actions of thrombin receptor-derived polypeptides in rat and guinea pig lung parenchymal smooth muscle. Proceedings of the Western Pharmacology Society, 1995, 38, 93-6.	0.1	2
257	Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends in Pharmacological Sciences, 1994, 15, 108-114.	8.7	160
258	Regulation of vascular and gastric smooth muscle contractility by pervanadate. British Journal of Pharmacology, 1994, 113, 403-410.	5.4	49
259	Tyrosine kinase inhibitors and the contractile action of G-protein-linked vascular agonists. Canadian Journal of Physiology and Pharmacology, 1994, 72, 1075-1085.	1.4	52
260	Role of the amino- and carboxyl-terminal domains of thrombin receptor-derived polypeptides in biological activity in vascular endothelium and gastric smooth muscle: evidence for receptor subtypes. Molecular Pharmacology, 1993, 43, 921-30.	2.3	61
261	Distinct signal transduction pathways for angiotensin-II in guinea pig gastric smooth muscle: differential blockade by indomethacin and tyrosine kinase inhibitors. Journal of Pharmacology and Experimental Therapeutics, 1993, 264, 958-66.	2.5	36
262	Vascular actions of thrombin receptor peptide. Canadian Journal of Physiology and Pharmacology, 1992, 70, 996-1003.	1.4	87
263	Actions of thrombin and thrombin receptor peptide analogues in gastric and aortic smooth muscle: Development of bioassays for structure-activity studies. Life Sciences, 1992, 51, 1325-1332.	4.3	30
264	Synergistic actions of epidermal growth factor-urogastrone and vasopressin in cultured aortic A-10 smooth muscle cells. Journal of Cellular Physiology, 1992, 152, 372-381.	4.1	5
265	Action of thrombin receptor polypeptide in gastric smooth muscle: identification of a core pentapeptide retaining full thrombin-mimetic intrinsic activity. Molecular Pharmacology, 1992, 42, 186-91.	2.3	45
266	Structureâ€activity relationships for transmembrane signaling: the receptor's turn. FASEB Journal, 1991, 5, 178-186.	0.5	46
267	Phosphorylation of human placenta membrane calpactins with bovine brain protein kinase C. Biochemical Society Transactions, 1990, 18, 586-587.	3.4	0
268	Epidermal growth factor stimulation of prostacyclin production by cultured aortic smooth muscle cells: Requirement for increased cellular calcium levels. Journal of Cellular Physiology, 1989, 139, 524-530.	4.1	22
269	Growth factors, their receptors and development. American Journal of Medical Genetics Part A, 1989, 34, 35-42.	2.4	30
270	Contractile actions of epidermal growth factor-urogastrone in isolated smooth muscle preparations from guinea pig stomach: structure-activity relationships and comparison with the effects of human transforming growth factor-alpha. Journal of Pharmacology and Experimental Therapeutics, 1989, 248, 384-90.	2.5	15

MORLEY D HOLLENBERG

#	Article	IF	CITATIONS
271	Epidermal growth factor-urogastrone (EGF-URO) causes contraction of porcine coronary arterial strips: inhibition by indomethacin. Proceedings of the Western Pharmacology Society, 1989, 32, 269-71.	0.1	1
272	A polypeptide growth inhibitor isolated from lactating bovine mammary gland (MDGI) is a lipid-carrying protein. Journal of Cellular Biochemistry, 1988, 38, 199-204.	2.6	31
273	Distinctive actions of epidermal growth factor-urogastrone in isolated smooth muscle preparations from guinea pig stomach: differential inhibition by indomethacin. Journal of Pharmacology and Experimental Therapeutics, 1988, 245, 625-31.	2.5	24
274	Receptors for insulin and other growth factors: rationale for common and distinct mechanisms of cell activation. Clinical and Investigative Medicine, 1987, 10, 475-9.	0.6	0
275	Receptors for insulin and epidermal growth factor: Interaction with organomercurial agarose. Journal of Cellular Biochemistry, 1985, 28, 143-157.	2.6	6
276	Aggressive behaviour in mice provokes a marked increase in both plasma epidermal growth factor and renin. Acta Physiologica Scandinavica, 1981, 111, 367-371.	2.2	38
277	Mitogenesis in normal human fibroblasts by polyinosinic · polycytidylic acid and other synthetic acidic polymers: Enhancement of action by glucocorticoids. Journal of Cellular Physiology, 1981, 108, 445-454.	4.1	15
278	Membrane Receptors and Hormone Action. Advances in Protein Chemistry, 1976, 30, 251-451.	4.4	424
279	Insulin and epidermal growth factor. Human fibroblast receptors related to deoxyribonucleic acid synthesis and amino acid uptake. Journal of Biological Chemistry, 1975, 250, 3845-53.	3.4	299
280	Epidermal Growth Factor: Receptors in Human Fibroblasts and Modulation of Action by Cholera Toxin. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70, 2964-2968.	7.1	326
281	The isolation of the native hormone-binding proteins from bovine pituitary posterior lobes. Crystallization of neurophysin-I and -II as complexes with [8-arginine]-vasopressin. Biochemical Journal, 1968, 106, 557-564.	3.1	139
282	Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5. Oncotarget, 0, 7, 41095-41109.	1.8	26