Igino Coco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9130152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic Field and Electron Density Scaling Properties in the Equatorial Plasma Bubbles. Remote Sensing, 2022, 14, 918.	4.0	4
2	Swarm Langmuir probes' data quality validation and future improvements. Geoscientific Instrumentation, Methods and Data Systems, 2022, 11, 149-162.	1.6	11
3	On the Best Settings to Calculate Ionospheric Irregularity Indices From the <i>In Situ</i> Plasma Parameters of CSES-01. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4058-4071.	4.9	3
4	Parallel Electrical Conductivity in the Topside Ionosphere Derived From Swarm Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028452.	2.4	6
5	Ionospheric Turbulence and the Equatorial Plasma Density Irregularities: Scaling Features and RODI. Remote Sensing, 2021, 13, 759.	4.0	10
6	Looking for a proxy of the ionospheric turbulence with Swarm data. Scientific Reports, 2021, 11, 6183.	3.3	16
7	3â€D Deep Electrical Resistivity Tomography of the Major Basin Related to the 2016 M _w 6.5 Central Italy Earthquake Fault. Tectonics, 2021, 40, e2020TC006628.	2.8	11
8	Sign-Singularity Analysis of Field-Aligned Currents in the Ionosphere. Atmosphere, 2021, 12, 708.	2.3	4
9	Occurrence of GPS Loss of Lock Based on a Swarm Half-Solar Cycle Dataset and Its Relation to the Background Ionosphere. Remote Sensing, 2021, 13, 2209.	4.0	9
10	Echo occurrence in the southern polar ionosphere for the SuperDARN Dome C East and Dome C North radars. Polar Science, 2021, 28, 100684.	1.2	3
11	High-latitude polar pattern of ionospheric electron density: Scaling features and IMF dependence. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 217, 105531.	1.6	8
12	Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study. Remote Sensing, 2021, 13, 2493.	4.0	9
13	Dependence of Parallel Electrical Conductivity in the Topside Ionosphere on Solar and Geomagnetic Activity. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029138.	2.4	5
14	A New Ionospheric Index to Investigate Electron Temperature Small-Scale Variations in the Topside Ionosphere. Universe, 2021, 7, 290.	2.5	5
15	On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model. Remote Sensing, 2021, 13, 4077.	4.0	13
16	Blast-induced liquefaction in silty sands for full-scale testing of ground improvement methods: Insights from a multidisciplinary study. Engineering Geology, 2020, 265, 105437.	6.3	24
17	Intermittency and Passive Scalar Nature of Electron Density Fluctuations in the Highâ€Latitude Ionosphere at Swarm Altitude. Geophysical Research Letters, 2020, 47, e2020GL089628.	4.0	6
18	On the Multifractal Features of Lowâ€Frequency Magnetic Field Fluctuations in the Fieldâ€Aligned Current Ionospheric Polar Regions: Swarm Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027429.	2.4	15

Ιςινο Coco

#	Article	IF	CITATIONS
19	On the 2015 St. Patrick's Storm Turbulent State of the Ionosphere: Hints From the Swarm Mission. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027934.	2.4	28
20	A Preliminary Risk Assessment of Geomagnetically Induced Currents over the Italian Territory. Space Weather, 2019, 17, 46-58.	3.7	40
21	The response of high latitude ionosphere to the 2015 St. Patrick's day storm from in situ and ground based observations. Advances in Space Research, 2018, 62, 638-650.	2.6	17
22	The response of high latitude ionosphere to the 2015 June 22 storm. Annals of Geophysics, 2018, 61, .	1.0	5
23	Latitudinal dependence of geomagnetically induced currents during geomagnetic storms. Annals of Geophysics, 2018, 61, .	1.0	4
24	Features of Magnetic Field Fluctuations in the Ionosphere at Swarm altitude. Annals of Geophysics, 2018, 61, .	1.0	3
25	Characterising the electron density fluctuations in the high-latitude ionosphere at Swarm altitude in response to the geomagnetic activity. Annals of Geophysics, 2018, 61, .	1.0	5
26	Electric field computation analysis for the Electric Field Detector (EFD) on board the China Seismic-Electromagnetic Satellite (CSES). Advances in Space Research, 2017, 60, 2206-2216.	2.6	6
27	Comparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period. Earth, Planets and Space, 2016, 68, .	2.5	43
28	The 8 June 2000 ULF wave activity: A case study. Journal of Geophysical Research, 2012, 117, .	3.3	20
29	Dynamical changes of the polar cap potential structure: an information theory approach. Nonlinear Processes in Geophysics, 2011, 18, 697-707.	1.3	6
30	Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere. International Journal of Geophysics, 2011, 2011, 1-8.	1.1	4
31	A case study of global ULF pulsations using data from space-borne and ground-based magnetometers and a SuperDARN radar. KosmìÄna Nauka ì Tehnologìâ, 2011, 17, 54-67.	0.5	2
32	Future Extension of the Super Dual Auroral Radar Network. Earth, Moon and Planets, 2009, 104, 29-31.	0.6	0
33	Different responses of northern and southern high latitude ionospheric convection to IMF rotations: a case study based on SuperDARN observations. Annales Geophysicae, 2009, 27, 2423-2438.	1.6	5
34	Extended SuperDARN and IMAGE observations for northward IMF: Evidence for dual lobe reconnection. Journal of Geophysical Research, 2008, 113, .	3.3	17
35	The effects of an interplanetary shock on the high-latitude ionospheric convection during an IMF <l>B_y</l> -dominated period. Annales Geophysicae, 2008, 26, 2937-2951. 	1.6	10
36	Effects on SuperDARN HF radar echoes of sudden impulses of solar wind dynamic pressure. Annales Geophysicae, 2005, 23, 1771-1783.	1.6	9

#	Article	IF	CITATIONS
37	CsI(Tl) scintillators as γ-ray detectors for the identification of hidden explosives. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 471, 234-238.	1.6	1
38	lonospheric Turbulence: A CHALLENGE FOR GPS LOSS OF LOCK UNDERSTANDING. Space Weather, 0, , .	3.7	4