
Joseph G Kunkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9130099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the ability of zebrafish scales to contribute to the short-term homeostatic regulation of [Ca2+] in the extracellular fluid during calcemic challenges. Fisheries Science, 2019, 85, 943-959.	0.7	7
2	Recognizing incipient epizootic shell disease lesions in the carapace of the American lobster, Homarus americanus. Bulletin of Marine Science, 2018, 94, 863-886.	0.4	1
3	Calcium fluxes at the bone/plasma interface: Acute effects of parathyroid hormone (PTH) and targeted deletion of PTH/PTH-related peptide (PTHrP) receptor in the osteocytes. Bone, 2018, 116, 135-143.	1.4	13
4	3D-Xray-tomography of American lobster shell-structure. An overview. Fisheries Research, 2017, 186, 372-382.	0.9	2
5	My Adventure Volunteering on NOAA Ships. Fisheries, 2015, 40, 360-361.	0.6	0
6	Visualization of Highly Dynamic F-Actin Plus Ends in Growing Phaseolus vulgaris Root Hair Cells and Their Responses to Rhizobium etli Nod Factors. Plant and Cell Physiology, 2014, 55, 580-592.	1.5	36
7	Modeling the calcium and phosphate mineralization of American lobster cuticle. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1601-1611.	0.7	13
8	Carbonate apatite formulation in cuticle structure adds resistance to microbial attack for American lobster. Marine Biology Research, 2013, 9, 27-34.	0.3	17
9	Mineral Fine Structure of the American Lobster Cuticle. Journal of Shellfish Research, 2012, 31, 515-526.	0.3	57
10	Calcium entry into pollen tubes. Trends in Plant Science, 2012, 17, 32-38.	4.3	101
11	Exocytosis Precedes and Predicts the Increase in Growth in Oscillating Pollen Tubes. Plant Cell, 2009, 21, 3026-3040.	3.1	137
12	Pollen Tube Growth Oscillations and Intracellular Calcium Levels Are Reversibly Modulated by Actin Polymerization. Plant Physiology, 2008, 146, 1611-1621.	2.3	176
13	Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cytoskeleton, 2007, 64, 217-232.	4.4	108
14	Imaging the actin cytoskeleton in growing pollen tubes. Sexual Plant Reproduction, 2006, 19, 51-62.	2.2	65
15	Oscillatory Increases in Alkalinity Anticipate Growth and May Regulate Actin Dynamics in Pollen Tubes of Lily. Plant Cell, 2006, 18, 2182-2193.	3.1	112
16	Proton pump-rich cell secretes acid in skin of zebrafish larvae. American Journal of Physiology - Cell Physiology, 2006, 290, C371-C378.	2.1	178
17	NAD(P)H Oscillates in Pollen Tubes and Is Correlated with Tip Growth. Plant Physiology, 2006, 142, 1460-1468.	2.3	119
18	Use of Non-Invasive Ion-Selective Microelectrode Techniques for the Study of Plant Development. , 2006, , 109-137.		29

2

Joseph G Kunkel

#	Article	IF	CITATIONS
19	Bone as an ion exchange organ: Evidence for instantaneous cell-dependent calcium efflux from bone not due to resorption. Bone, 2005, 37, 545-554.	1.4	65
20	Late migration and seawater entry is physiologically disadvantageous for American shad juveniles. Journal of Fish Biology, 2003, 63, 1521-1537.	0.7	19
21	Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. Journal of Experimental Botany, 2003, 54, 65-72.	2.4	101
22	Involvement of extracellular calcium influx in the self-incompatibility response ofPapaver rhoeas. Plant Journal, 2002, 29, 333-345.	2.8	105
23	Calcium signalling in pollen of Papaver rhoeas undergoing the self-incompatibility (SI) response. Sexual Plant Reproduction, 2001, 14, 105-110.	2.2	7
24	Covariance of ion flux measurements allows new interpretation ofXenopus laevis oocyte physiology. The Journal of Experimental Zoology, 2001, 290, 652-661.	1.4	13
25	Cellular oscillations and the regulation of growth: the pollen tube paradigm. BioEssays, 2001, 23, 86-94.	1.2	62
26	Cellular oscillations and the regulation of growth: the pollen tube paradigm. BioEssays, 2000, 23, 86-94.	1.2	146
27	Ion Changes in Legume Root Hairs Responding to Nod Factors. Plant Physiology, 2000, 123, 443-452.	2.3	95
28	Growing Pollen Tubes Possess a Constitutive Alkaline Band in the Clear Zone and a Growth-dependent Acidic Tip. Journal of Cell Biology, 1999, 144, 483-496.	2.3	287
29	Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant Journal, 1999, 19, 379-386.	2.8	103
30	Rhizobium Nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs. Plant Journal, 1999, 19, 347-352.	2.8	116
31	Developmental fate of the yolk protein lipovitellin in embryos and larvae of winter flounder,Pleuronectes americanus. , 1999, 284, 686-695.		23
32	Pollen Tube Growth and the Intracellular Cytosolic Calcium Gradient Oscillate in Phase while Extracellular Calcium Influx Is Delayed. Plant Cell, 1997, 9, 1999.	3.1	93
33	Pollen Tube Growth and the Intracellular Cytosolic Calcium Gradient Oscillate in Phase while Extracellular Calcium Influx Is Delayed Plant Cell, 1997, 9, 1999-2010.	3.1	340
34	Characterization of a heat-stable fraction of lipovitellin and development of an immunoassay for vitellogenin and yolk protein in winter flounder (Pleuronectes americanus). , 1997, 278, 156-166.		23
35	Follicle Cell Calmodulin in Blattella germanica: Transcript Accumulation during Vitellogenesis Is Regulated by Juvenile Hormone. Developmental Biology, 1995, 170, 314-320.	0.9	16
36	Ionic components of dorsal and ventral currents in vitellogenic follicles of the cockroach, Blattella germanica. Journal of Insect Physiology, 1994, 40, 323-331.	0.9	2

JOSEPH G KUNKEL

#	Article	IF	CITATIONS
37	Most Egg Calmodulin Is a Follicle Cell Contribution to the Cytoplasm of the Blattella germanica Oocyte. Developmental Biology, 1994, 161, 513-521.	0.9	9
38	Comparison of Defolliculated Oocytes and Intact Follicles of the Cockroach Using the Vibrating Probe to Record Steady Currents. Developmental Biology, 1994, 162, 111-122.	0.9	7
39	High abundance calmodulin from Blattella germanica eggs binds to vitellin subunits but disappears during vitellin utilization. Insect Biochemistry and Molecular Biology, 1992, 22, 293-304.	1.2	11
40	Cyclic fluctuations in arylphorin, the principal serum storage protein of Lymantria dispar, indicate multiple roles in development. Insect Biochemistry, 1990, 20, 73-82.	1.8	18
41	Arylphorin ofTrichoplusia ni: Characterization and parasite-induced precocious increase in titer. Archives of Insect Biochemistry and Physiology, 1990, 13, 117-125.	0.6	37
42	Demonstration of a voltage dependent calcium current in follicles of the cockroachNauphoeta cinerea. Invertebrate Reproduction and Development, 1990, 18, 159-164.	0.3	4
43	Cleaning insect oocytes by dissection and enzyme treatment. Tissue and Cell, 1990, 22, 349-358.	1.0	1
44	Patterns of ionic currents around the developing oocyte of the German cockroach, Blattella germanica. Developmental Biology, 1990, 137, 266-275.	0.9	9
45	The effect of ions, ion channel blockers, and ionophores on uptake of vitellogenin into cockroach follicles. Developmental Biology, 1990, 142, 386-391.	0.9	12
46	Yolk hydrolase activities associated with polypeptide and oligosaccharide processing ofBlattella germanica vitellin. Archives of Insect Biochemistry and Physiology, 1988, 8, 39-58.	0.6	27
47	Experimental modifications of an insect vitellin affect its structure and its uptake by oocytes. Archives of Insect Biochemistry and Physiology, 1988, 9, 179-199.	0.6	13
48	Correlation of yolk phosphatase expression with the programmed proteolysis of vitellin inBlattella germanica during embryonic development. Archives of Insect Biochemistry and Physiology, 1988, 9, 237-250.	0.6	35
49	Vitellogenesis in the cockroachNauphoeta cinerea: Separation of two classes of ovarian binding sites and calcium effects on binding and uptake. Archives of Insect Biochemistry and Physiology, 1988, 9, 323-337.	0.6	16
50	Studies on ligand recognition by vitellogenin receptors in follicle membrane preparations of the german cockroach, Blattella germanica. Insect Biochemistry, 1988, 18, 395-404.	1.8	22
51	Analytic Immunologic Techniques. Springer Series in Experimental Entomology, 1988, , 1-41.	0.7	3
52	Moulting-cycle regulation of haemolymph protein clearance in cockroaches: Possible size-dependent mechanism. Journal of Insect Physiology, 1987, 33, 155-158.	0.9	19
53	Purification of two distinct oocyte vitellins and identification of their corresponding vitellogenins in fat body and hemolymph of Blaberus discoidalis. Insect Biochemistry, 1987, 17, 189-198.	1.8	8
54	Processing of pro-vitellogenin in insect fat body: A role for high-mannose oligosaccharide. Developmental Biology, 1986, 116, 422-430.	0.9	51

JOSEPH G KUNKEL

#	Article	IF	CITATIONS
55	Structure and embryonic degradation of two native vitellins in the cockroach, Periplaneta americana. Insect Biochemistry, 1985, 15, 259-275.	1.8	43
56	A comparative study of the size-heterogeneous high mannose oligosaccharides of some insect vitellins. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1984, 79, 379-390.	0.2	3
57	BODY SHAPE METRICS AND ORGANISMAL EVOLUTION. Evolution; International Journal of Organic Evolution, 1982, 36, 914-933.	1.1	62
58	A Minimal Model Of Metamorphosis: Fat Body Competence to Respond to Juvenile Hormone. , 1981, , 107-129.		21
59	Concanavalin a reactivity and carbohydrate structure of Blattella germanica vitellin. Insect Biochemistry, 1980, 10, 703-714.	1.8	21
60	A molting rhythm for serum proteins of the cockroach, Blatta orientalis. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1978, 60, 333-337.	0.2	3
61	The specificity of an antiserum against mosquito vitellogenin and its use in a radioimmunological precipitation assay for protein synthesis. Journal of Insect Physiology, 1978, 24, 481-489.	0.9	37
62	COCKROACH MOLTING. II. THE NATURE OF REGENERATION-INDUCED DELAY OF MOLTING HORMONE SECRETION. Biological Bulletin, 1977, 153, 145-162.	0.7	40
63	Selectivity of yolk protein uptake: Comparison of vitellogenins of two insects. Journal of Insect Physiology, 1976, 22, 809-818.	0.9	96
64	Larval-specific protein in the order dictyoptera—II. Antagonistic effects of ecdysone and regeneration on LSP concentration in the hemolymph of the oriental cockroach, Blatta orientalis. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1975, 51, 177-180.	0.2	3
65	Larval-specific serum protein in the order dictyoptera—I. immunologic characterization in larval Blattella germanica and cross-reaction throughout the order. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1974, 47, 697-710.	0.2	7
66	Gonadotrophic effect of juvenile hormone in Blattella germanica: A rapid, simple quantitative bioassay. Journal of Insect Physiology, 1973, 19, 1285-1297.	0.9	26
67	Development and the availability of food in the German cockroach, Blattella germanica (L.). Journal of Insect Physiology, 1966, 12, 227-235.	0.9	109

68 Ions and Pollen Tube Growth. , 0, , 47-69.

24