
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9129427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie - International Edition, 2007, 46, 1536-1538.	7.2	283
2	Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 2013, 299, 137-145.	3.1	167
3	Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities. Chemical Communications, 2011, 47, 1446-1448.	2.2	163
4	Single-Site Homogeneous and Heterogeneized Gold(III) Hydrogenation Catalysts:Â Mechanistic Implications. Journal of the American Chemical Society, 2006, 128, 4756-4765.	6.6	161
5	New Heterogenized Gold(I)-Heterocyclic Carbene Complexes as Reusable Catalysts in Hydrogenation and Cross-Coupling Reactions. Advanced Synthesis and Catalysis, 2006, 348, 1899-1907.	2.1	156
6	Gold Nanoparticles and Gold(III) Complexes as General and Selective Hydrosilylation Catalysts. Angewandte Chemie - International Edition, 2007, 46, 7820-7822.	7.2	156
7	Heterogenized Gold Complexes: Recoverable Catalysts for Multicomponent Reactions of Aldehydes, Terminal Alkynes, and Amines. ACS Catalysis, 2012, 2, 399-406.	5.5	155
8	Conjugated Microporous Polymers Incorporating BODIPY Moieties as Light-Emitting Materials and Recyclable Visible-Light Photocatalysts. Macromolecules, 2016, 49, 1666-1673.	2.2	143
9	Synthesis of Structured Porous Polymers with Acid and Basic Sites and Their Catalytic Application in Cascade-Type Reactions. Chemistry of Materials, 2013, 25, 981-988.	3.2	130
10	Enantioselective hydrogenation of alkenes and imines by a gold catalyst. Chemical Communications, 2005, , 3451.	2.2	129
11	Optically active complexes of transition metals (RhI, RuII, CoII and NiII) with 2-aminocarbonylpyrrolidine ligands. Selective catalysts for hydrogenation of prochiral olefins. Journal of Organometallic Chemistry, 1992, 431, 233-246.	0.8	125
12	Preparation and properties of Ti-containing MCM-41. Studies in Surface Science and Catalysis, 1994, 84, 69-75.	1.5	125
13	New rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes. Journal of the Chemical Society Chemical Communications, 1991, , 1253-1255.	2.0	124
14	Gold (I) and (III) catalyze Suzuki cross-coupling and homocoupling, respectively. Journal of Catalysis, 2006, 238, 497-501.	3.1	122
15	Asymmetric Aldol Reaction Using Immobilized Proline on Mesoporous Support. Advanced Synthesis and Catalysis, 2005, 347, 1395-1403.	2.1	120
16	Gold complexes as catalysts: Chemoselective hydrogenation of nitroarenes. Applied Catalysis A: General, 2009, 356, 99-102.	2.2	117
17	Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis and Catalysis, 2004, 346, 1758-1764.	2.1	113
18	Homogeneous and heterogenized Au(iii) Schiff base-complexes as selective and general catalysts for self-coupling of aryl boronic acids. Chemical Communications, 2005, 1990-1992.	2.2	113

FELIX SANCHEZ

#	Article	IF	CITATIONS
19	Hybrid organic—inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. Journal of Catalysis, 2004, 224, 170-177.	3.1	112
20	Cu and Au Metal–Organic Frameworks Bridge the Gap between Homogeneous and Heterogeneous Catalysts for Alkene Cyclopropanation Reactions. Chemistry - A European Journal, 2010, 16, 9789-9795.	1.7	107
21	Asymmetric Aldol Reaction Catalyzed by a Heterogenized Proline on a Mesoporous Support. The Role of the Nature of Solvents. Journal of Organic Chemistry, 2007, 72, 9353-9356.	1.7	106
22	Large pore Ti-zeolites and mesoporous Ti-silicalites as catalysts for selective oxidation of organic sulfides. Catalysis Letters, 1996, 39, 153-156.	1.4	100
23	Bifunctional Metal Organic Framework Catalysts for Multistep Reactions: MOF u(BTC)â€[Pd] Catalyst for Oneâ€Pot Heteroannulation of Acetylenic Compounds. Advanced Synthesis and Catalysis, 2012, 354, 1347-1355.	2.1	100
24	Efficient synthesis of vinyl and alkyl sulfides via hydrothiolation of alkynes and electron-deficient olefins using soluble and heterogenized gold complexes catalysts. Applied Catalysis A: General, 2010, 375, 49-54.	2.2	97
25	Stabilization of Au(III) on heterogeneous catalysts and their catalytic similarities with homogeneous Au(III) metal organic complexes. Applied Catalysis A: General, 2005, 291, 247-252.	2.2	92
26	Pincer-type Pyridine-Based N-Heterocyclic Carbene Amine Ru(II) Complexes as Efficient Catalysts for Hydrogen Transfer Reactions. Organometallics, 2011, 30, 2180-2188.	1.1	92
27	Synthesis of Electron-Rich CNN-Pincer Complexes, with N-Heterocyclic Carbene and (S)-Proline Moieties and Application to Asymmetric Hydrogenation. Organometallics, 2010, 29, 134-141.	1.1	91
28	Title is missing!. Journal of Catalysis, 2002, 211, 208-215.	3.1	83
29	Synthesis and characterization of new chiral Rh(l) complexes with N, Nâ€2-, and N, P-ligands. A study of anchoring on the moodified zeolites and catalytic properties of heterogenized complexes. Journal of Organometallic Chemistry, 1995, 492, 11-21.	0.8	81
30	Preparation of new chiral dioxomolybdenum complexes heterogenised on modified USY-zeolites efficient catalysts for selective epoxidation of allylic alcohols. Journal of Molecular Catalysis A, 1996, 107, 225-234.	4.8	81
31	New chiral ligands bearing two N-heterocyclic carbene moieties at a dioxolane backbone. Gold, palladium and rhodium complexes as enantioselective catalysts. Chemical Communications, 2010, 46, 3001.	2.2	80
32	Zeolites as base catalysts: Condensation of benzaldehyde derivatives with activated methylenic compounds on Germanium-substituted faujasite. Journal of Catalysis, 1990, 126, 192-198.	3.1	77
33	Immobilization of (NHC)NN-Pincer Complexes on Mesoporous MCM-41 Support. Organometallics, 2010, 29, 4491-4498.	1.1	75
34	Conjugate addition of diethylzinc to enones catalyzed by homogeneous and supported chiral Ni-complexes. Cooperative effect of the support on enantioselectivity. Tetrahedron: Asymmetry, 1992, 3, 845-848.	1.8	72
35	Heterogenized Gold(I), Gold(III), and Palladium(II) Complexes for C-C Bond Reactions. Synlett, 2007, 2007, 1771-1774.	1.0	71
36	Soluble Gold and Palladium Complexes Heterogenized on MCMâ€41 Are Effective and Versatile Catalysts. European Journal of Inorganic Chemistry, 2008, 2008, 1107-1115.	1.0	70

#	Article	IF	CITATIONS
37	Large pore bifunctional titanium–aluminosilicates: the inorganic non-enzymatic version of the epoxidase conversion of linalool to cyclic ethers. Journal of the Chemical Society Chemical Communications, 1995, , 1635-1636.	2.0	68
38	New Pyridine ONNâ€Pincer Gold and Palladium Complexes: Synthesis, Characterization and Catalysis in Hydrogenation, Hydrosilylation and CC Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2007, 349, 2470-2476.	2.1	67
39	Photochemistry of Zr-based MOFs: ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there?. Physical Chemistry Chemical Physics, 2016, 18, 27761-27774.	1.3	67
40	Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2,) Tj ETQq0 0 C) rgBT /Ove 2.1	erlock 10 Tf 5
41	Synthesis of bifunctional Au–Sn organic–inorganic catalysts for acid-free hydroamination reactions. Chemical Communications, 2008, , 6218.	2.2	62
42	Chiral dioxomolybdenum(VI) and oxovanadium(V) complexes anchored on modified USY-zeolite and mesoporous MCM-41 as solid selective catalysts for oxidation of sulfides to sulfoxides or sulfones. Journal of Molecular Catalysis A, 2004, 211, 227-235.	4.8	60
43	A deprotection strategy of a BODIPY conjugated porous polymer to obtain a heterogeneous (dipyrrin)(bipyridine)ruthenium(<scp>ii</scp>) visible light photocatalyst. Journal of Materials Chemistry A, 2016, 4, 17274-17278.	5.2	58
	Oneâ€Pot Multifunctional Catalysis with NNNâ€Pincer Zrâ€MOF: Zr Base Catalyzed Condensation with	1.0	

44	Oneâ€Pot Multifunctional Catalysis with NNNâ€Pincer Zrâ€MOF: Zr Base Catalyzed Condensation with Rhâ€Catalyzed Hydrogenation. ChemCatChem, 2013, 5, 3092-3100.	1.8	57
45	Mono-functionalization of porous aromatic frameworks to use as compatible heterogeneous catalysts in one-pot cascade reactions. Applied Catalysis A: General, 2014, 469, 206-212.	2.2	57
46	Post-functionalized iridium–Zr-MOF as a promising recyclable catalyst for the hydrogenation of aromatics. Green Chemistry, 2014, 16, 3522-3527.	4.6	57
47	Palladium-heterogenized porous polyimide materials as effective and recyclable catalysts for reactions in water. Green Chemistry, 2015, 17, 466-473.	4.6	56
48	Recyclable mesoporous silica-supported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions. Green Chemistry, 2011, 13, 2471.	4.6	54
49	Design of a Bifunctional Ir–Zr Based Metal–Organic Framework Heterogeneous Catalyst for the Nâ€Alkylation of Amines with Alcohols. ChemCatChem, 2014, 6, 1794-1800.	1.8	54
50	An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events. Physical Chemistry Chemical Physics, 2015, 17, 16257-16269.	1.3	52
51	Reactivity of polyhalogenated and zeolite-encapsulated metalloporphyrins in oxidation with dioxygen. Journal of Molecular Catalysis A, 1996, 109, 91-98.	4.8	49
52	Experimental and Theoretical Studies of the Proton-Hopping Reaction of 7-Hydroxyquinoline in Viscous Hydroxylic Media. Journal of Physical Chemistry A, 1998, 102, 8871-8880.	1.1	46

53	From homogeneous to heterogeneous catalysis: zeolite supported metal complexes with C2-multidentate nitrogen ligands. Application as catalysts for olefin hydrogenation and cyclopropanation reactions. Journal of Organometallic Chemistry, 2002, 655, 134-145.	0.8	46
54	Postfunctionalized Porous Polymeric Aromatic Frameworks with an Organocatalyst and a Transition Metal Catalyst for Tandem Condensation–Hydrogenation Reactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 1078-1084.	3.2	45

#	Article	IF	CITATIONS
55	Efficient multicolor and white light emission from Zr-based MOF composites: spectral and dynamic properties. Journal of Materials Chemistry C, 2015, 3, 11300-11310.	2.7	44
56	Synthesis of bimetallic Zr(Ti)-naphthalendicarboxylate MOFs and their properties as Lewis acid catalysis. RSC Advances, 2016, 6, 106790-106797.	1.7	44
57	New Mn(II) and Cu(II) chiral C2-multidentate complexes immobilised in zeolites (USY, MCM41). Journal of Molecular Catalysis A, 2003, 194, 137-152.	4.8	43
58	New OLEDs Based on Zirconium Metalâ€Organic Framework. Advanced Optical Materials, 2018, 6, 1701060.	3.6	42
59	Gas transport properties of new aromatic polyimides based on 3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride. Journal of Membrane Science, 2015, 476, 442-448.	4.1	40
60	Heterogenised catalysts on zeolites. Synthesis of new chiral Rh(1) complexes with (2S,4R)-trans-4-RCOO-2-(t-butylaminocarbonyl) pyrrolidines and (2S,4S)-cis-4-RCONH-2-(t-butylaminocarbonyl) pyrrolidines. Heterogenisation on silica and a USY-zeolite and study of the role of support on their catalytic profile in hydrogenation of olefins.	0.8	38
61	Journal of Organometallic Chemistry, 1997, 544, 147-156. Approaches to the synthesis of heterogenised metalloporphyrins. Journal of Molecular Catalysis A, 2006, 246, 109-117.	4.8	38
62	MCM-41 Heterogenized Chiral Amines as Base Catalysts for Enantioselective Michael Reaction. Catalysis Letters, 2002, 82, 237-242.	1.4	36
63	Spectral and dynamical properties of a Zr-based MOF. Physical Chemistry Chemical Physics, 2016, 18, 5112-5120.	1.3	36
64	2,3-Di-O-pentyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin as a Chiral Stationary Phase in Capillary Gas Chromatography. Journal of High Resolution Chromatography, 1998, 21, 225-233.	2.0	35
65	Chiral NHCâ€Complexes with Dioxolane Backbone Heterogenized on MCMâ€41. Catalytic Activity. ChemCatChem, 2011, 3, 1320-1328.	1.8	35
66	First Preâ€Functionalised Polymeric Aromatic Framework from Mononitrotetrakis(iodophenyl)methane and its Applications. Chemistry - A European Journal, 2014, 20, 5111-5120.	1.7	35
67	Efficient Rare-Earth-Based Coordination Polymers as Green Photocatalysts for the Synthesis of Imines at Room Temperature. Inorganic Chemistry, 2018, 57, 6883-6892.	1.9	35
68	New rhodium complexes anchored on silica and modified Y-zeolite as efficient catalysts for hydrogenation of olefins. Journal of Molecular Catalysis, 1991, 70, 369-379.	1.2	34
69	Novel efficient catalysts based on imine-linked mesoporous polymers for hydrogenation and cyclopropanation reactions. Journal of Materials Chemistry, 2012, 22, 24637.	6.7	34
70	Hydrogenation of aromatics under mild conditions on transition metal complexes in zeolites. A cooperative effect of molecular sieves. Catalysis Letters, 1995, 32, 313-318.	1.4	33
71	Homogeneous and encapsulated within the cavities of zeolite Y chiral manganese and copper complexes with C2-multidentate ligands as catalysts for the selective oxidation of sulphides to sulfoxides or sulfones. Journal of Molecular Catalysis A, 2002, 178, 253-266.	4.8	32
72	Fluorine-Phenanthroimidazole Porous Organic Polymer: Efficient Microwave Synthesis and Photocatalytic Activity. ACS Applied Materials & Interfaces, 2019, 11, 3459-3465.	4.0	32

#	Article	IF	CITATIONS
73	Easy Synthesis of New Chiral Tridentate Schiff Bases and Their Use as [N,N,O] Ligands for Ni and Pd Complexesâ~' Catalytic Behaviour versus Hydrogenation Reactions. European Journal of Inorganic Chemistry, 2004, 2004, 1955-1962.	1.0	29
74	Mechanistic analogies and differences between gold- and palladium-supported Schiff base complexes as hydrogenation catalysts: A combined kinetic and DFT study. Journal of Catalysis, 2008, 254, 226-237.	3.1	29
75	Femtosecond Fluorescence Dynamics of a Proton-Transfer Dye Interacting with Silica-Based Nanomaterials. Journal of Physical Chemistry C, 2010, 114, 6281-6289.	1.5	29
76	Multisite solid (NHC)NN-Ru-catalysts for cascade reactions: Synthesis of secondary amines from nitro compounds. Journal of Catalysis, 2012, 291, 110-116.	3.1	29
77	Rh and Ir complexes containing multidentate, C2-symmetry ligands. Structural and catalytic properties in asymmetric hydrogenation. Journal of Organometallic Chemistry, 2000, 601, 284-292.	0.8	28
78	Mapping the Distribution of an Individual Chromophore Interacting with Silica-Based Nanomaterials. Journal of the American Chemical Society, 2010, 132, 5507-5514.	6.6	28
79	Gas separation properties of mixed-matrix membranes containing porous polyimides fillers. Journal of Membrane Science, 2013, 447, 403-412.	4.1	28
80	Competitive Excimer Formation and Energy Transfer in Zrâ€Based Heterolinker Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 13072-13082.	1.7	28
81	Photodynamics of Zr-based MOFs: effect of explosive nitroaromatics. Physical Chemistry Chemical Physics, 2017, 19, 16337-16347.	1.3	28
82	Presence of tetrahydro-β-carboline-3-carboxylic acids in foods by gas chromatography—mass spectrometry as their N-methoxycarbonyl methyl ester derivatives. Journal of Chromatography A, 1997, 765, 265-277.	1.8	27
83	Homogeneous versus Supported ONN Pincerâ€Type Gold and Palladium Complexes: Catalytic Activity. ChemSusChem, 2009, 2, 650-657.	3.6	27
84	Direct observation of breaking of the intramolecular H-bond, and slowing down of the proton motion and tuning its mechanism in an HBO derivative. Physical Chemistry Chemical Physics, 2015, 17, 14569-14581.	1.3	26
85	Porous aromatic frameworks (PAFs) as efficient supports for N-heterocyclic carbene catalysts. Catalysis Science and Technology, 2016, 6, 6037-6045.	2.1	25
86	Switching to a Reversible Proton Motion in a Charge-Transferred Dye. Journal of Physical Chemistry B, 2015, 119, 552-562.	1.2	23
87	Chiral Metal Transition Complexes in Zeolites: Enantioselective Hydrogenation of Dehydrophenylalanine Derivatives. Studies in Surface Science and Catalysis, 1993, , 2293-2296.	1.5	22
88	Hydrogen-bonding interactions and double proton-transfer reactions at both gates of cyclodextrins. Chemical Physics Letters, 1998, 296, 335-342.	1.2	22
89	From intra- to inter-molecular hydrogen bonds with the surroundings: steady-state and timeresolved behaviours. Photochemical and Photobiological Sciences, 2015, 14, 1306-1318.	1.6	22
90	Synthesis of polyesters by an efficient heterogeneous phosphazene (P1)-Porous Polymeric Aromatic Framework catalyzed-Ring Opening Polymerization of lactones. European Polymer Journal, 2017, 95, 775-784.	2.6	22

#	Article	IF	CITATIONS
91	Cyclopropanation reactions catalysed by copper and rhodium complexes homogeneous and heterogenised on a modified USY-zeolite. Influence of the catalyst on the catalytic profile. Journal of Molecular Catalysis A, 1999, 144, 337-346.	4.8	21
92	New chiral diphosphinites: synthesis of Rh complexes. Heterogenisation on zeolites. Journal of Organometallic Chemistry, 1999, 588, 186-194.	0.8	21
93	Zirconium Materials from Mixed Dicarboxylate Linkers: Enhancing the Stability for Catalytic Applications. ChemCatChem, 2014, 6, 3426-3433.	1.8	21
94	Synthesis and characterisation of chiral Cu(I) complexes with substituted-pyrrolidine-ligands bearing a triethoxysilyl group and preparation of heterogenised catalysts on USY-zeolites. Inorganica Chimica Acta, 1996, 244, 79-85.	1.2	20
95	Synthesis of Rh(I) and Ir(I) complexes with chiral C2-multitopic ligands. Journal of Organometallic Chemistry, 2001, 634, 25-33.	0.8	20
96	Synthesis and characterisation of chiral Cu(I) complexes of substituted pyrrolidine ligands. Efficient catalysts for cyclopropanation reactions. Inorganica Chimica Acta, 1996, 244, 239-245.	1.2	19
97	Heterogenised Rh(I), Ir(I) metal complexes with chiral triaza donor ligands: a cooperative effect between support and complex. Inorganica Chimica Acta, 2004, 357, 3071-3078.	1.2	19
98	Mesoporous MCM41-heterogenised (salen)Mn and Cu complexes as effective catalysts for oxidation of sulfides to sulfoxidesIsolation of a stable supported Mn(V)O complex, responsible of the catalytic activity. Journal of Molecular Catalysis A, 2004, 221, 201-208.	4.8	19
99	Spectral properties of amorphous silica (SiO2) and mesoporous structured silicates (MCM-41 and) Tj ETQq1 Chemistry, 2006, 178, 26-32.	1 0.784314 2.0	rgBT /Overloc 18
100	Zeolites as Base Catalysts. Preparation of Calcium Antagonists Intermediates by Condensation of Benzaldehyde with Ethyl Acetoacetate Studies in Surface Science and Catalysis, 1991, 59, 503-511.	1.5	17
101	Fast to Ultrafast Dynamics of Palladium Phthalocyanine Covalently Bonded to MCM-41 Mesoporous Material. Journal of Physical Chemistry C, 2009, 113, 19199-19207.	1.5	17
102	Amino-functionalized zirconium and cerium MOFs: Catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines. Applied Catalysis A: General, 2021, 623, 118287.	2.2	17
103	Heterogenised chiral amines as environmentally friendly base catalysts for enantioselective Michael addition. Catalysis Today, 2005, 107-108, 404-409.	2.2	16
104	Exploring the Photobehavior of Nanocaged Monomers and H- and J-Aggregates of a Proton-Transfer Dye within NaX and NaY Zeolites. Journal of Physical Chemistry C, 2014, 118, 8217-8226.	1.5	16
105	The Conjugate Addition of Glyoxalate-Derived Anion Equivalents by Phase Transfer Catalysis. Synthesis, 1983, 1983, 911-913.	1.2	15
106	Immobilized Proton Sponge on Inorganic CarriersThe Synergic Effect of the Support on Catalytic Activity. Journal of Catalysis, 2002, 211, 208-215.	3.1	15
107	Adamantyl-BINOL as platform for chiral porous polymer aromatic frameworks. Multiple applications as recyclable catalysts. Journal of Catalysis, 2019, 377, 609-618.	3.1	15
108	Pseudoesters and Derivatives; XVII1. Synthesis of 4-Alkylamino- and 4-Alkylthio-5-methoxyfuran-2(5H)-ones. Synthesis, 1983, 1983, 397-398.	1.2	14

#	Article	IF	CITATIONS
109	Copper complexes with multidentate ligands derived from l-proline. X-ray crystal structure of {[Cu(N,N′-bis[(S)-prolyl]ethylenediamine)]ClO4}2·(MeCN)2. Inorganica Chimica Acta, 2000, 306, 116-121.	1.2	14
110	Synthesis and characterization of proton-conducting sol–gel membranes produced from 1,4-bis(triethoxysilyl)benzene and (3-glycidoxypropyl)trimethoxysilane. Journal of Power Sources, 2005, 151, 57-62.	4.0	14
111	Diasteroselective Structure Directing Effect of (1 <i>S</i> ,2 <i>S</i>)-2-Hydroxymethyl-1-benzyl-1-methylpyrrolidinium in the Synthesis of ZSM-12. Chemistry of Materials, 2010, 22, 2276-2286.	3.2	14
112	Conformational analysis of acyclic compounds with oxygen–sulphur interactions. Some 2-thio-derivatives of 1-phenylethanol. Journal of the Chemical Society Perkin Transactions II, 1978, , 412-416.	0.9	13
113	Copper and manganese complexes with C2-multitopic ligands. X-ray crystal structure of [Cu(N,N′-bis[(S)-prolyl]phenylenediamine)H2O]. Catalytic properties. Inorganica Chimica Acta, 2002, 333, 83-92.	1.2	13
114	Spectroscopy and relaxation dynamics of salicylideneaniline derivative aggregates encapsulated in MCM41 and SBA15 pores. Microporous and Mesoporous Materials, 2016, 226, 34-43.	2.2	13
115	Conformational analysis of acyclic compounds with oxygen–sulphur interactions. Part VI. Some 1-thioderivatives of 2-propanol and its acetates. Canadian Journal of Chemistry, 1979, 57, 2426-2433.	0.6	12
116	Pyrazolopyridazinones by 1,3-Dipolar Cycloaddition of Diazomethane to Pyridazin-3(2H)-ones. Heterocycles, 1982, 18, 175.	0.4	12
117	Pseudoesters and derivatives. XXIII Reaction of 3-bromo-5-methoxyfuran-2(5)-one with nucleophiles. Formation of cyclopropane derivatives. Tetrahedron, 1986, 42, 3715-3722.	1.0	11
118	Regiospecific hydrosilylation of styrene by rhodium complexes heterogenised on modified USY-zeolites. Studies in Surface Science and Catalysis, 1997, , 501-507.	1.5	11
119	From homogeneous to heterogeneous catalysis: Supported Pd(II) metal complexes with chiral triaza donor ligands. Catalysis Today, 2005, 107-108, 362-370.	2.2	11
120	A cooperative effect between support and the heterogenised metalloporphyrins on electrocatalytic oxygen reduction. Catalysis Letters, 2005, 101, 99-103.	1.4	11
121	Structure-direction of chiral 2-hydroxymethyl-1-benzyl-1-methylpyrrolidinium in the cotemplated synthesis of ferrierite: Fundaments of diastereo-recognition from non-chiral microporous structures. Microporous and Mesoporous Materials, 2011, 146, 57-68.	2.2	11
122	Effective Approach toward Conjugated Porous Organic Frameworks Based on Phenanthrene Building Blocks: Metal-Free Heterogeneous Photocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 15108-15114.	4.0	11
123	Mesoporous MCM41-heterogenised (salen)Mn and Cu complexes as effective catalysts for oxidation of sulfides to sulfoxides. Journal of Molecular Catalysis A, 2004, 221, 201-208.	4.8	10
124	Conformational analysis of acyclic compounds with oxygen–sulphur interactions. Part 3. A study of some erythro-2-thio-derivatives of 1,2-diphenylethanol. Journal of the Chemical Society Perkin Transactions II, 1979, , 564-568.	0.9	9
125	Development of homogeneous and heterogenized rhodium(i) and palladium(ii) complexes with ligands based on a chiral proton sponge building block and their application as catalysts. Dalton Transactions, 2011, 40, 9589.	1.6	9
126	A new approach to 1-alkyl-1,3-dihydro-2H-benzimidazol-2-ones. Monatshefte Für Chemie, 1985, 116, 639-644.	0.9	8

#	Article	IF	CITATIONS
127	Heteroaromatic Nucleophilic Substitution Reactions by Phaseâ€Transfer Catalysis– Synthesis of New Alkoxypridazinâ€3(2 <i>H</i>)â€ones. Liebigs Annalen Der Chemie, 1985, 1985, 1465-1473.	0.8	8
128	Confinement effect on ultrafast events of a salicylideneaniline derivative within mesoporous materials. Microporous and Mesoporous Materials, 2017, 248, 54-61.	2.2	8
129	Experimental and theoretical insights into the influence of electronic density on proton-transfer reactions. Physical Chemistry Chemical Physics, 2018, 20, 27149-27161.	1.3	8
130	Efficient light harvesting within a C153@Zr-based MOF embedded in a polymeric film: spectral and dynamical characterization. Physical Chemistry Chemical Physics, 2017, 19, 17544-17552.	1.3	7
131	Interrogating ultrafast dynamics of a salicylideneaniline derivative within faujasite zeolites. Chemical Physics Letters, 2017, 683, 145-153.	1.2	7
132	Optical characterization of a two-dimensional BODIPY-based polymer material and its related chromophores. Journal of Materials Chemistry C, 2019, 7, 7872-7884.	2.7	7
133	Synthesis of 2â€aroylpiperazinylâ€4â€alkoxyquinazolines by phaseâ€transferâ€catalysed heteroaromatic nucleophilic substitution. Journal of Heterocyclic Chemistry, 1984, 21, 1189-1192.	1.4	6
134	4,5-Disubstituted Pyridazin-3(2H)-ones as Hypotensive Drugs: Incorporation of a β-Blocking Moiety. Archiv Der Pharmazie, 1986, 319, 60-64.	2.1	6
135	A study of the phase-transfer alkoxycarbonylation of secondary alkyl amines. Application of a factorial design. Journal of the Chemical Society Perkin Transactions II, 1987, , 695-697.	0.9	6
136	New Cardiotonic Agents Related to Amrinone: Synthesis of 1,2-Dihydro-5-arylpyridin-2-ones. Archiv Der Pharmazie, 1992, 325, 483-490.	2.1	6
137	Readily Available Highly Active [Ti]-Adamantyl-BINOL Catalysts for the Enantioselective Alkylation of Aldehydes. ACS Omega, 2018, 3, 1197-1200.	1.6	6
138	Modulating the spectroscopy and dynamics of a proton-transfer dye by functionalizing with phenyl groups. Physical Chemistry Chemical Physics, 2022, 24, 6828-6835.	1.3	6
139	Porous aromatic frameworks containing binaphthyl-dihydroazepine units (cBAPAFs) as catalytic supports for asymmetric reactions. Journal of Catalysis, 2022, 413, 434-442.	3.1	6
140	Preparation and characterization of hybrid membranes for fuel cell applications: EPDM filled with organophilized silicas. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1203-1210.	2.4	5
141	Femto- to Millisecond Time-Resolved Photodynamics of a Double-Functionalized Push–Pull Organic Linker: Potential Candidate for Optoelectronically Active MOFs. International Journal of Molecular Sciences, 2020, 21, 4366.	1.8	4
142	Investigation of Advanced Hybrid PEM Based on Sulfonyl Fluoride PFSA and Grafted Inorganic Nanoparticles. ECS Transactions, 2010, 33, 823-838.	0.3	3
143	Syntheses of 1-Aryl-2-{4-[4-(3-oxobutyl)phenyl]piperazin-1-yl}ethanones. Archiv Der Pharmazie, 1986, 319, 552-558.	2.1	2
144	Preparation and characterization of hybrid membranes for fuel cell applications: hydrogenated styrene-butadiene rubber filled with alkyl, phenyl or tolyl sulfonated silica. Polymer International, 2011, 60, 493-499.	1.6	1

#	Article	IF	CITATIONS
145	Chiral Dioxo-Molybdenum Complexes Anchored to Modified Usy-Zeolites. Application to Selective Epoxidation of Olefins. , 1995, , 179-189.		1
146	Homogeneous and Heterogenized Au(III) Schiff Base-Complexes as Selective and General Catalysts for Self-Coupling of Aryl Boronic Acids ChemInform, 2005, 36, no.	0.1	0
147	Enantioselective Hydrogenation of Alkenes and Imines by a Gold Catalyst ChemInform, 2005, 36, no.	0.1	0
148	Frontispiece: Competitive Excimer Formation and Energy Transfer in Zr-Based Heterolinker Metal-Organic Frameworks. Chemistry - A European Journal, 2016, 22, .	1.7	0