
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9129341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of action of IC 100, a humanized IgG4 monoclonal antibody targeting apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Translational Research, 2023, 251, 27-40.	5.0	8
2	The Role of Non-canonical and Canonical Inflammasomes in Inflammaging. Frontiers in Molecular Neuroscience, 2022, 15, 774014.	2.9	16
3	Renal and Inflammatory Proteins as Biomarkers of Diabetic Kidney Disease and Lupus Nephritis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-11.	4.0	10
4	Inflammatory Biomarkers of Traumatic Brain Injury. Pharmaceuticals, 2022, 15, 660.	3.8	12
5	Cohort study on the differential expression of inflammatory and angiogenic factors in thrombi, cerebral and peripheral plasma following acute large vessel occlusion stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1827-1839.	4.3	7
6	Enoxaparin Attenuates Acute Lung Injury and Inflammasome Activation after Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 646-654.	3.4	19
7	Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats. Scientific Reports, 2021, 11, 8791.	3.3	13
8	Tumor necrosis factor-alpha and interferon-gamma induce inflammasome-mediated corneal endothelial cell death. Experimental Eye Research, 2021, 207, 108574.	2.6	24
9	Neural-respiratory inflammasome axis in traumatic brain injury. Experimental Neurology, 2020, 323, 113080.	4.1	35
10	Oligodendrocytes modulate the immune-inflammatory response in EAE via TNFR2 signaling. Brain, Behavior, and Immunity, 2020, 84, 132-146.	4.1	47
11	ASC, IL-18 and Galectin-3 as Biomarkers of Non-Alcoholic Steatohepatitis: A Proof of Concept Study. International Journal of Molecular Sciences, 2020, 21, 8580.	4.1	18
12	The Inflammasome in Times of COVID-19. Frontiers in Immunology, 2020, 11, 583373.	4.8	92
13	Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. Journal of Neuroinflammation, 2020, 17, 260.	7.2	58
14	The Inflammasome Signaling Proteins ASC and IL-18 as Biomarkers of Psoriasis. Frontiers in Pharmacology, 2020, 11, 1238.	3.5	40
15	IC100: a novel anti-ASC monoclonal antibody improves functional outcomes in an animal model of multiple sclerosis. Journal of Neuroinflammation, 2020, 17, 143.	7.2	41
16	The Inflammasome Adaptor Protein ASC in Mild Cognitive Impairment and Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 4674.	4.1	42
17	Netosis and Inflammasomes in Large Vessel Occlusion Thrombi. Frontiers in Pharmacology, 2020, 11, 607287.	3.5	18
18	Human Lung Cell Pyroptosis Following Traumatic Brain Injury. Cells, 2019, 8, 69.	4.1	41

#	Article	IF	CITATIONS
19	Caspase-1 Inhibition Attenuates Hyperoxia-induced Lung and Brain Injury in Neonatal Mice. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 341-354.	2.9	33
20	The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. Journal of Neuroinflammation, 2019, 16, 27.	7.2	75
21	Traumatic Brain Injury-Induced Acute Lung Injury: Evidence for Activation and Inhibition of a Neural-Respiratory-Inflammasome Axis. Journal of Neurotrauma, 2018, 35, 2067-2076.	3.4	68
22	Microglial Inflammasome Activation in Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2018, 35, 1681-1693.	3.4	66
23	Inflammasome proteins as biomarkers of traumatic brain injury. PLoS ONE, 2018, 13, e0210128.	2.5	82
24	Inflammasome Proteins in Serum and Serum-Derived Extracellular Vesicles as Biomarkers of Stroke. Frontiers in Molecular Neuroscience, 2018, 11, 309.	2.9	73
25	Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 135.	2.4	82
26	Defective Inflammatory Pathways in Never-Treated Depressed Patients Are Associated with Poor Treatment Response. Neuron, 2018, 99, 914-924.e3.	8.1	153
27	Myeloid cell transmigration across the CNS vasculature triggers IL-1β–driven neuroinflammation during autoimmune encephalomyelitis in mice. Journal of Experimental Medicine, 2016, 213, 929-949.	8.5	126
28	Exosomeâ€mediated inflammasome signaling after central nervous system injury. Journal of Neurochemistry, 2016, 136, 39-48.	3.9	183
29	Therapeutics targeting the inflammasome after central nervous system injury. Translational Research, 2016, 167, 35-45.	5.0	85
30	The Inflammasome Pyrin Contributes to Pertussis Toxin-Induced IL-1β Synthesis, Neutrophil Intravascular Crawling and Autoimmune Encephalomyelitis. PLoS Pathogens, 2014, 10, e1004150.	4.7	73
31	Pyroptotic Neuronal Cell Death Mediated by the AIM2 Inflammasome. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 621-629.	4.3	227
32	Activation and Regulation of Cellular Inflammasomes: Gaps in Our Knowledge for Central Nervous System Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 369-375.	4.3	274
33	Pattern recognition receptors and central nervous system repair. Experimental Neurology, 2014, 258, 5-16.	4.1	357
34	ATP and potassium ions: a deadly combination for astrocytes. Scientific Reports, 2014, 4, 4576.	3.3	44
35	Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013, 61, 1113-1121.	4.9	265
36	Involvement of the inflammasome in abnormal semen quality of men with spinal cord injury. Fertility and Sterility, 2013, 99, 118-124.e2.	1.0	42

#	Article	IF	CITATIONS
37	Deep Tissue Injury in Development of Pressure Ulcers: A Decrease of Inflammasome Activation and Changes in Human Skin Morphology in Response to Aging and Mechanical Load. PLoS ONE, 2013, 8, e69223.	2.5	63
38	Effects of Therapeutic Hypothermia on Inflammasome Signaling after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1939-1947.	4.3	75
39	Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome. Journal of Neurosurgery, 2012, 117, 1119-1125.	1.6	142
40	Activation of the Nuclear Factor E2-Related Factor 2/Antioxidant Response Element Pathway Is Neuroprotective after Spinal Cord Injury. Journal of Neurotrauma, 2012, 29, 936-945.	3.4	77
41	P2X ₄ Receptors Influence Inflammasome Activation after Spinal Cord Injury. Journal of Neuroscience, 2012, 32, 3058-3066.	3.6	154
42	Caspase-1 Level Is Higher in the Scalp in Androgenetic Alopecia. Dermatologic Surgery, 2012, 38, 1033-1039.	0.8	27
43	5-Hydroxytryptamine 5HT2C Receptors Form a Protein Complex with N-Methyl-d-aspartate GluN2A Subunits and Activate Phosphorylation of Src Protein to Modulate Motoneuronal Depolarization. Journal of Biological Chemistry, 2012, 287, 11049-11059.	3.4	21
44	Pannexin: From discovery to bedside in 11±4 years?. Brain Research, 2012, 1487, 150-159.	2.2	98
45	Astrogliosis involves activation of retinoic acidâ€inducible geneâ€like signaling in the innate immune response after spinal cord injury. Glia, 2012, 60, 414-421.	4.9	43
46	Functional Recovery after Peripheral Nerve Injury is Dependent on the Pro-Inflammatory Cytokines IL-1β and TNF: Implications for Neuropathic Pain. Journal of Neuroscience, 2011, 31, 12533-12542.	3.6	276
47	The Pannexin 1 Channel Activates the Inflammasome in Neurons and Astrocytes. Journal of Biological Chemistry, 2009, 284, 18143-18151.	3.4	476
48	A Novel Protein Complex in Membrane Rafts Linking the NR2B Glutamate Receptor and Autophagy Is Disrupted following Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 703-720.	3.4	49
49	Inhibition of the Inflammasome Complex Reduces the Inflammatory Response after Thromboembolic Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 534-544.	4.3	302
50	Therapeutic Neutralization of the NLRP1 Inflammasome Reduces the Innate Immune Response and Improves Histopathology after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1251-1261.	4.3	272
51	Sex differences in XIAP cleavage after traumatic brain injury in the rat. Neuroscience Letters, 2009, 461, 49-53.	2.1	11
52	Neuroprotective effects of bone morphogenetic protein 7 (BMP7) treatment after spinal cord injury. Neuroscience Letters, 2009, 465, 226-229.	2.1	25
53	Absolute Threshold. , 2008, , 3-3.		0
54	A Molecular Platform in Neurons Regulates Inflammation after Spinal Cord Injury. Journal of Neuroscience, 2008, 28, 3404-3414.	3.6	304

#	Article	IF	CITATIONS
55	FasL, Fas, and Death-Inducing Signaling Complex (DISC) Proteins are Recruited to Membrane Rafts after Spinal Cord Injury. Journal of Neurotrauma, 2007, 24, 823-834.	3.4	28
56	Therapeutic hypothermia modulates TNFR1 signaling in the traumatized brain via early transient activation of the JNK pathway and suppression of XIAP cleavage. European Journal of Neuroscience, 2006, 24, 2283-2290.	2.6	70
57	Inflammatory and Apoptotic Signaling after Spinal Cord Injury. Journal of Neurotrauma, 2006, 23, 335-344.	3.4	90
58	Tumor Necrosis Factor Receptor 1 and Its Signaling Intermediates Are Recruited to Lipid Rafts in the Traumatized Brain. Journal of Neuroscience, 2004, 24, 11010-11016.	3.6	73
59	Monoubiquitination and Cellular Distribution of XIAP in Neurons after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1129-1136.	4.3	46
60	Effects of Finasteride on Apoptosis and Regulation of the Human Hair Cycle. Journal of Cutaneous Medicine and Surgery, 2002, 6, 1-9.	1.2	23
61	Regulation of caspases and XIAP in the brain after asphyxial cardiac arrest in rats. NeuroReport, 2001, 12, 3751-3754.	1.2	28
62	Apoptotic and Antiapoptotic Mechanisms after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1189-1198.	4.3	164
63	Apoptotic and Anti-Apoptotic Mechanisms Following Spinal Cord Injury. Journal of Neuropathology and Experimental Neurology, 2001, 60, 422-429.	1.7	135
64	Apoptosis after traumatic human spinal cord injury. Journal of Neurosurgery, 1998, 89, 911-920.	1.6	388
65	Traumatic Spinal Cord Injury Induces Nuclear Factor-κB Activation. Journal of Neuroscience, 1998, 18, 3251-3260.	3.6	426
66	Modulation of Microglial form and Immune Function by Factors Released from Goldfish Optic Nerves. International Journal of Neuroscience, 1997, 91, 133-146.	1.6	2
67	Activation of CPP32 during apoptosis of neurons and astrocytes. Journal of Neuroscience Research, 1997, 48, 168-180.	2.9	142
68	Bcl-2 Expression in Neural Cells Blocks Activation of ICE/CED-3 Family Proteases during Apoptosis. Journal of Neuroscience, 1996, 16, 5654-5660.	3.6	110
69	Differentiation of an immortalized CNS neuronal cell line decreases their susceptibility to cytotoxic T cell lysis in vitro. Journal of Neuroimmunology, 1994, 49, 135-143.	2.3	30
70	RESISTANCE AND SUSCEPTIBILITY OF NEURAL CELLS TO LYSIS BY CYTOTOXIC LYMPHOCYTES AND BY CYTOLYTIC GRANULES. Transplantation, 1992, 54, 520-525.	1.0	27
71	Regulation and selective expression of Ly-6A/E, a lymphocyte activation molecule, in the central nervous system. Molecular Brain Research, 1990, 8, 9-15.	2.3	25
72	Neurones express high levels of a structurally modified, activated form of pp60c-src. Nature, 1985, 316, 554-557.	27.8	376

#	Article	IF	CITATIONS
73	Differentiation and transformation of neural plate cells. Developmental Biology, 1984, 103, 38-52.	2.0	18
74	Erythropoiesis in normal and mutant chick embryos. Developmental Biology, 1980, 75, 442-453.	2.0	11
75	Isolation and transformation of primary mesenchymal cells of the chick embryo. Cell, 1979, 17, 801-811.	28.9	22
76	Ontogeny of hemoglobins: Evidence for hemoglobin M. Developmental Biology, 1974, 38, 229-236.	2.0	16