
Olga Kirichenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9129128/publications.pdf Version: 2024-02-01

OLCA KIRICHENKO

#	Article	IF	CITATIONS
1	Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure. Journal of Molecular Catalysis A, 2004, 209, 97-106.	4.8	80
2	Selective oxidation of ethanol to acetaldehyde over Au–Cu catalysts prepared by a redox method. Catalysis Today, 2015, 241, 246-254.	2.2	79
3	Pd–Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environment International, 2011, 37, 1044-1052.	4.8	65
4	Liquid-phase hydrogenation of phenylacetylene to styrene on silica-supported Pd–Fe nanoparticles. Mendeleev Communications, 2016, 26, 228-230.	0.6	39
5	Au/Pt/TiO2 catalysts prepared by redox method for the chemoselective 1,2-propanediol oxidation to lactic acid and an NMR spectroscopy approach for analyzing the product mixture. Applied Catalysis A: General, 2015, 491, 170-183.	2.2	35
6	Preparation of bimetallic gold catalysts by redox reaction on oxide-supported metals for green chemistry applications. Catalysis Today, 2015, 246, 216-231.	2.2	32
7	Microwave-activated dehydrogenation of perhydro-N-ethylcarbazol over bimetallic Pd-M/TiO2 catalysts as the second stage of hydrogen storage in liquid substrates. International Journal of Hydrogen Energy, 2017, 42, 26723-26729.	3.8	30
8	Preparation of alumina-supported gold-ruthenium bimetallic catalysts by redox reactions and their activity in preferential CO oxidation. Applied Catalysis B: Environmental, 2013, 134-135, 123-129.	10.8	26
9	Evaluation of stability of silica-supported Fe–Pd and Fe–Pt nanoparticles in aerobic conditions using thermal analysis. Journal of Thermal Analysis and Calorimetry, 2014, 118, 749-758.	2.0	25
10	Nanogold-Containing Catalysts for Low-Temperature Removal of S-VOC from Air. Topics in Catalysis, 2009, 52, 351-358.	1.3	19
11	Novel Fe-Pd/SiO2 catalytic materials for degradation of chlorinated organic compounds in water. Pure and Applied Chemistry, 2014, 86, 1141-1158.	0.9	18
12	Studies of supported oxide catalysts in the direct selective oxidation of hydrogen sulfide. Reaction Kinetics and Catalysis Letters, 1992, 48, 55-63.	0.6	17
13	Thermal decomposition and reducibility of silica-supported precursors of Cu, Fe and Cu–Fe nanoparticles. Journal of Thermal Analysis and Calorimetry, 2018, 134, 233-251.	2.0	16
14	Application of silica-supported Fe–Cu nanoparticles in the selective hydrogenation of p-dinitrobenzene to p-phenylenediamine. Russian Journal of Physical Chemistry A, 2017, 91, 201-204.	0.1	15
15	Gold nanoparticles in environmental catalysis: Influence of the Fe-modified alumina supports on the catalytic behavior of supported gold nanoparticles in CO oxidation in the presence of ammonia. Chemical Engineering Journal, 2016, 292, 62-71.	6.6	14
16	Phase composition of aluminium oxides promoted by Cr, Cu and Ni additives. Reaction Kinetics and Catalysis Letters, 1985, 28, 9-15.	0.6	13
17	Silica-supported iron oxide nanoparticles: unexpected catalytic activity in hydrogenation of phenylacetylene. Mendeleev Communications, 2017, 27, 512-514.	0.6	12
18	Thermal analysis of ammonium trioxalatometallate complexes supported on titania and reducibility of their decomposition products. Thermochimica Acta, 2009, 494, 35-39.	1.2	11

Olga Kirichenko

#	Article	IF	CITATIONS
19	Novel Fe–Pd/γ-Al2O3 catalysts for the selective hydrogenation of C≡C bonds under mild conditions. Mendeleev Communications, 2019, 29, 339-342.	0.6	11
20	Thermal analysis of intermediates formed during preparation of a Pt/WOx/Al2O3 catalyst for 1,3-propanediol synthesis from glycerol. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2205-2218.	2.0	11
21	Thermal stability of supported Alâ^'Cuâ^'Cr catalysts. Reaction Kinetics and Catalysis Letters, 1989, 38, 307-312.	0.6	10
22	The influence of the dispersion of metals on the activity of Pt/C and Pd/C catalysts in the dehydrogenation of perhydroterphenyl. Russian Journal of Physical Chemistry A, 2010, 84, 1122-1126.	0.1	10
23	Genesis of phase composition of supported Alâ^'Feâ^'O catalysts. Reaction Kinetics and Catalysis Letters, 1993, 51, 167-175.	0.6	9
24	A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods. Materials, 2017, 10, 496.	1.3	7
25	CuO-Fe2O3 Nanoparticles Supported on SiO2 and Al2O3 for Selective Hydrogenation of 2-Methyl-3-Butyn-2-ol. Catalysts, 2021, 11, 625.	1.6	7
26	The novel route of preparation of the supported gold catalysts by deposition-precipitation. Studies in Surface Science and Catalysis, 2010, 175, 537-540.	1.5	5
27	Catalytic Activity of Cu and Cu–Fe Hydrosilicates in Hydrogenation with Molecular Hydrogen. Russian Journal of Physical Chemistry A, 2018, 92, 2417-2423.	0.1	5
28	Influence of the electronic state of the metals in Fe–Pt/SiO2 catalysts on the performance of hydrogenation of phenylacetylene. Mendeleev Communications, 2019, 29, 666-668.	0.6	5
29	Unusual behavior of bimetallic nanoparticles in catalytic processes of hydrogenation and selective oxidation. Pure and Applied Chemistry, 2020, 92, 989-1006.	0.9	5
30	Oxidation of methane, butane and carbon monoxide on Alâ^'Fe oxide catalysts. Reaction Kinetics and Catalysis Letters, 1993, 49, 235-240.	0.6	4
31	Hydrogenation of heptanal over heterogeneous catalysts. Mendeleev Communications, 2013, 23, 219-221.	0.6	4
32	A New Redox Method for Depositing FeOx on the Surface of Pd(0)/SiO2 Nanoparticles—Catalysts for Selective Phenylacetylene Hydrogenation. Russian Journal of Physical Chemistry A, 2018, 92, 2396-2398.	0.1	4
33	Redox behavior of novel FeOx/Pd/SiO2 catalytic nanomaterials. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1913-1922.	2.0	4
34	Selective Hydrogenation of the C≡C to Đ¡=Đ¡ Bond on Fe-Containing Catalysts. Russian Journal of Physical Chemistry A, 2018, 92, 2412-2416.	0.1	3
35	Facile Redox Synthesis of Novel Bimetallic Crn+/Pd0 Nanoparticles Supported on SiO2 and TiO2 for Catalytic Selective Hydrogenation with Molecular Hydrogen. Catalysts, 2021, 11, 583.	1.6	3
36	Effect of ultra-low amount of gold in oxide-supported bimetallic Au–Fe and Au–Cu catalysts on liquid-phase aerobic glycerol oxidation in water. Catalysis Science and Technology, 2021, 11, 5881-5897.	2.1	3

Olga Kirichenko

#	Article	IF	CITATIONS
37	Thermostability of copper-chromium oxide catalysts on alumina support promoted by lanthanum and cerium. Studies in Surface Science and Catalysis, 1995, , 1145-1152.	1.5	2
38	Mechanical testing of catalysts for fuel combustion. 1. Thermomechanical stability. Reaction Kinetics and Catalysis Letters, 1993, 51, 183-188.	0.6	1
39	Mechanical testing of fuel combustion catalysts. II. Thermal shock resistance. Reaction Kinetics and Catalysis Letters, 1993, 51, 197-202.	0.6	1
40	Preparation of cation-substituted hexaaluminates with large surface area using mechanical activation methods. Studies in Surface Science and Catalysis, 1995, , 851-858.	1.5	0