Neha Arora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9129048/publications.pdf Version: 2024-02-01

Νέην Δρώρν

#	Article	IF	CITATIONS
1	Kinetics and energeticsÂof metal halide perovskite conversion reactions at the nanoscale. Communications Materials, 2022, 3, .	6.9	12
2	Quantifying Stabilized Phase Purity in Formamidinium-Based Multiple-Cation Hybrid Perovskites. Chemistry of Materials, 2021, 33, 2769-2776.	6.7	13
3	Halide Versus Nonhalide Salts: The Effects of Guanidinium Salts on the Structural, Morphological, and Photovoltaic Performances of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900234.	5.8	19
4	New Strategies for Defect Passivation in Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903090.	19.5	237
5	Minimizing the Trade-Off between Photocurrent and Photovoltage in Triple-Cation Mixed-Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 10188-10195.	4.6	36
6	Cyclopentadithiophene-Based Hole-Transporting Material for Highly Stable Perovskite Solar Cells with Stabilized Efficiencies Approaching 21%. ACS Applied Energy Materials, 2020, 3, 7456-7463.	5.1	26
7	Digestive-Ripening-Facilitated Nanoengineering of Diverse Bimetallic Nanostructures. Langmuir, 2019, 35, 6493-6505.	3.5	11
8	Low ost and Highly Efficient Carbonâ€Based Perovskite Solar Cells Exhibiting Excellent Longâ€Term Operational and UV Stability. Small, 2019, 15, e1904746.	10.0	83
9	Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics. ACS Applied Energy Materials, 2019, 2, 4264-4273.	5.1	20
10	Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Science Advances, 2019, 5, eaaw2543.	10.3	524
11	Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V. Research, 2019, 2019, 1-9.	5.7	15
12	Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V. Research, 2019, 2019, 8474698.	5.7	22
13	Influence of the Nature of A Cation on Dynamics of Charge Transfer Processes in Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706073.	14.9	58
14	Kinetics of Ion-Exchange Reactions in Hybrid Organic–Inorganic Perovskite Thin Films Studied by In Situ Real-Time X-ray Scattering. Journal of Physical Chemistry Letters, 2018, 9, 6750-6754.	4.6	28
15	High Open Circuit Voltage for Perovskite Solar Cells with S,Siâ€Heteropentaceneâ€Based Hole Conductors. European Journal of Inorganic Chemistry, 2018, 2018, 4573-4578.	2.0	10
16	Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800416.	3.7	45
17	Insights about the Absence of Rb Cation from the 3D Perovskite Lattice: Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance. Small, 2018, 14, e1802033.	10.0	24
18	High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy. Chemical Physics Letters, 2017, 683, 211-215	2.6	31

Neha Arora

#	Article	IF	CITATIONS
19	Function Follows Form: Correlation between the Growth and Local Emission of Perovskite Structures and the Performance of Solar Cells. Advanced Functional Materials, 2017, 27, 1701433.	14.9	26
20	Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358, 768-771.	12.6	1,285
21	Unraveling the Impact of Rubidium Incorporation on the Transport-Recombination Mechanisms in Highly Efficient Perovskite Solar Cells by Small-Perturbation Techniques. Journal of Physical Chemistry C, 2017, 121, 24903-24908.	3.1	42
22	The Role of Rubidium in Multiple ationâ€Based Highâ€Efficiency Perovskite Solar Cells. Advanced Materials, 2017, 29, 1701077.	21.0	120
23	Donor–Acceptor-Type <i>S</i> , <i>N</i> -Heteroacene-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 44423-44428.	8.0	31
24	Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH ₃ NH ₃ PbI ₃ Perovskite. Advanced Energy Materials, 2016, 6, 1502472.	19.5	196
25	High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene–Dithiophene Derivatives as Hole-Transporting Materials. ACS Energy Letters, 2016, 1, 107-112.	17.4	105
26	Intrinsic and Extrinsic Stability of Formamidinium Lead Bromide Perovskite Solar Cells Yielding High Photovoltage. Nano Letters, 2016, 16, 7155-7162.	9.1	104
27	Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Science Advances, 2016, 2, e1601156.	10.3	307
28	Photovoltaic and Amplified Spontaneous Emission Studies of Highâ€Quality Formamidinium Lead Bromide Perovskite Films. Advanced Functional Materials, 2016, 26, 2846-2854.	14.9	66
29	Growth Engineering of CH ₃ NH ₃ PbI ₃ Structures for Highâ€Efficiency Solar Cells. Advanced Energy Materials, 2016, 6, 1501358.	19.5	36
30	Asymmetric Cathodoluminescence Emission in CH ₃ NH ₃ PbI _{3–<i>x</i>} Br _{<i>x</i>} Perovskite Single Crystals. ACS Photonics, 2016, 3, 947-952.	6.6	30
31	Understanding the Impact of Bromide on the Photovoltaic Performance of CH ₃ NH ₃ PbI ₃ Solar Cells. Advanced Materials, 2015, 27, 7221-7228.	21.0	73
32	From (Au ₅ Sn + AuSn) physical mixture to phase pure AuSn and Au ₅ Sn intermetallic nanocrystals with tailored morphology: digestive ripening assisted approach. Physical Chemistry Chemical Physics, 2014, 16, 11381-11389.	2.8	35
33	Investigation Regarding the Role of Chloride in Organic–Inorganic Halide Perovskites Obtained from Chloride Containing Precursors. Nano Letters, 2014, 14, 6991-6996.	9.1	185
34	Role of spectator ions in influencing the properties of dopant-free ZnO nanocrystals. New Journal of Chemistry, 2014, 38, 4783-4790.	2.8	21
35	Carbonization of solvent and capping agent based enhancement in the stabilization of cobalt nanoparticles and their magnetic study. Journal of Materials Chemistry, 2012, 22, 20671.	6.7	25
36	Monodispersity and stability: case of ultrafine aluminium nanoparticles (<5 nm) synthesized by the solvated metal atom dispersion approach. Journal of Materials Chemistry, 2012, 22, 9058.	6.7	30

#	Article	IF	CITATIONS
37	Extraordinary Stability of Perovskite Solar Cells Yielding Photovoltage above 1.5V. , 0, , .		0