Brent C Emerson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9128876/publications.pdf

Version: 2024-02-01

57758 58581 7,778 133 44 82 citations h-index g-index papers 138 138 138 9938 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution, 2008, 23, 619-630.	8.7	559
2	Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution, 2012, 3, 613-623.	5.2	543
3	Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 2013, 16, 1245-1257.	6.4	514
4	Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends in Ecology and Evolution, 2000, 15, 104-109.	8.7	363
5	Islands as model systems in ecology and evolution: prospects fifty years after MacArthurâ€Wilson. Ecology Letters, 2015, 18, 200-217.	6.4	356
6	Species diversity can drive speciation. Nature, 2005, 434, 1015-1017.	27.8	271
7	Molecular Phylogeny and Evolution of the Plant-Specific Seven-Transmembrane MLO Family. Journal of Molecular Evolution, 2003, 56, 77-88.	1.8	220
8	Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Transâ€Mexican Volcanic Belt. Journal of Biogeography, 2015, 42, 1586-1600.	3.0	205
9	Bulk De Novo Mitogenome Assembly from Pooled Total DNA Elucidates the Phylogeny of Weevils (Coleoptera: Curculionoidea). Molecular Biology and Evolution, 2014, 31, 2223-2237.	8.9	195
10	Revealing the demographic histories of species using DNA sequences. Trends in Ecology and Evolution, 2001, 16, 707-716.	8.7	182
11	A roadmap for island biology: 50 fundamental questions after 50Âyears of <i>The Theory of Island Biogeography, 2017, 44, 963-983.</i>	3.0	167
12	HOW DID LIFE BECOME SO DIVERSE? THE DYNAMICS OF DIVERSIFICATION ACCORDING TO THE FOSSIL RECORD AND MOLECULAR PHYLOGENETICS. Palaeontology, 2007, 50, 23-40.	2.2	165
13	Sexual selection protects against extinction. Nature, 2015, 522, 470-473.	27.8	162
14	Connecting Earth observation to high-throughput biodiversity data. Nature Ecology and Evolution, 2017, 1, 176.	7.8	156
15	Why the COI barcode should be the community <scp>DNA</scp> metabarcode for the metazoa. Molecular Ecology, 2018, 27, 3968-3975.	3.9	131
16	Alarm Bells for the Molecular Clock? No Support for Ho et al.'s Model of Time-Dependent Molecular Rate Estimates. Systematic Biology, 2007, 56, 337-345.	5.6	106
17	A road map for molecular ecology. Molecular Ecology, 2013, 22, 2605-2626.	3.9	100
18	CRYPTIC CHOICE OF CONSPECIFIC SPERM CONTROLLED BY THE IMPACT OF OVARIAN FLUID ON SPERM SWIMMING BEHAVIOR. Evolution; International Journal of Organic Evolution, 2013, 67, 3523-3536.	2.3	92

#	Article	IF	Citations
19	MtDNA Phylogeography and Recent Intra-island Diversification among Canary Island Calathus Beetles. Molecular Phylogenetics and Evolution, 1999, 13, 149-158.	2.7	84
20	Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Molecular Ecology, 2011, 20, 5213-5225.	3.9	84
21	Inbreeding Promotes Female Promiscuity. Science, 2011, 333, 1739-1742.	12.6	84
22	Phylogeny, phylogeography, phylobetadiversity and the molecular analysis of biological communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2391-2402.	4.0	83
23	EXPERIMENTAL EVOLUTION EXPOSES FEMALE AND MALE RESPONSES TO SEXUAL SELECTION AND CONFLICT IN TRIBOLIUM CASTANEUM. Evolution; International Journal of Organic Evolution, 2011, 65, 713-724.	2.3	76
24	Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus) Tj ETQq0 0 0 rgBT /C	Overlock 1	0 Tf 50 542
25	Elevated substitution rate estimates from ancient DNA: model violation and bias of Bayesian methods. Molecular Ecology, 2009, 18, 4390-4397.	3.9	75
26	Origin and Maintenance of a Broad-Spectrum Disease Resistance Locus in Arabidopsis. Molecular Biology and Evolution, 2004, 21, 1661-1672.	8.9	73
27	Phylogeography. Current Biology, 2005, 15, R367-R371.	3.9	73
28	Quantifying surfaceâ€area changes of volcanic islands driven by Pleistocene seaâ€level cycles: biogeographical implications for the Macaronesian archipelagos. Journal of Biogeography, 2014, 41, 1242-1254.	3.0	73
29	Global Island Monitoring Scheme (GIMS): a proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation, 2018, 27, 2567-2586.	2.6	72
30	Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana <i>Ctenosaura pectinata < i> and related species. Molecular Ecology, 2008, 17, 3259-3275.</i>	3.9	71
31	COLONIZATION AND DIVERSIFICATION OF THE SPECIES BRACHYDERES RUGATUS (COLEOPTERA) ON THE CANARY ISLANDS: EVIDENCE FROM MITOCHONDRIAL DNA COII GENE SEQUENCES. Evolution; International Journal of Organic Evolution, 2000, 54, 911-923.	2.3	70
32	DIVERSIFICATION OF THE FOREST BEETLE GENUS TARPHIUS ON THE CANARY ISLANDS, AND THE EVOLUTIONARY ORIGINS OF ISLAND ENDEMICS. Evolution; International Journal of Organic Evolution, 2005, 59, 586.	2.3	67
33	DIVERSIFICATION OF THE FOREST BEETLE GENUS TARPHIUS ON THE CANARY ISLAND, AND THE EVOLUTIONARY ORIGINS OF ISLAND ENDEMICS. Evolution; International Journal of Organic Evolution, 2005, 59, 586-598.	2.3	64
34	INTERPRETING COLONIZATION OF THE CALATHUS (COLEOPTERA: CARABIDAE) ON THE CANARY ISLANDS AND MADEIRA THROUGH THE APPLICATION OF THE PARAMETRIC BOOTSTRAP. Evolution; International Journal of Organic Evolution, 2000, 54, 2081-2090.	2.3	63
35	Inbreeding depresses sperm competitiveness, but not fertilization or mating success in male <i>Tribolium castaneum </i> . Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3483-3491.	2.6	62
36	Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones. BMC Evolutionary Biology, 2011, 11, 170.	3.2	62

#	Article	IF	CITATIONS
37	Collembola, the biological species concept and the underestimation of global species richness. Molecular Ecology, 2013, 22, 5382-5396.	3.9	60
38	Phylogenetic Relationships of the Prodontria (Coleoptera; Scarabaeidae; Subfamily Melolonthinae), Derived from Sequence Variation in the Mitochondrial Cytochrome Oxidase II Gene. Molecular Phylogenetics and Evolution, 1995, 4, 433-447.	2.7	59
39	Age, origins and extinctions of the avifauna of Macaronesia: a synthesis of phylogenetic and fossil information. Quaternary Science Reviews, 2012, 50, 14-22.	3.0	58
40	Chloroplast microsatellites reveal colonization and metapopulation dynamics in the Canary Island pine. Molecular Ecology, 2006, 15, 2691-2698.	3.9	55
41	Combining contemporary and ancient DNA in population genetic and phylogeographical studies. Molecular Ecology Resources, 2010, 10, 760-772.	4.8	54
42	Population history of Berthelot's pipit: colonization, gene flow and morphological divergence in Macaronesia. Molecular Ecology, 2007, 16, 4599-4612.	3.9	51
43	Apparent â€~sympatric' speciation in ecologically similar herbivorous beetles facilitated by multiple colonizations of an island. Molecular Ecology, 2006, 15, 2935-2947.	3.9	50
44	The limited spatial scale of dispersal in soil arthropods revealed with wholeâ€community haplotypeâ€evel metabarcoding. Molecular Ecology, 2021, 30, 48-61.	3.9	49
45	Tracking colonization and diversification of insect lineages on islands: mitochondrial DNA phylogeography of Tarphius canariensis (Coleoptera: Colydiidae) on the Canary Islands. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2199-2205.	2.6	48
46	MtDNA metagenomics reveals largeâ€scale invasion of belowground arthropod communities by introduced species. Molecular Ecology, 2017, 26, 3104-3115.	3.9	47
47	Phylogenetic relationships, biogeography and speciation in the avian genus Saxicola. Molecular Phylogenetics and Evolution, 2008, 48, 1145-1154.	2.7	46
48	Morphological, molecular and biological evidence reveal two cryptic species in <i>Mecinus janthinus</i> Germar (Coleoptera, Curculionidae), a successful biological control agent of Dalmatian toadflax, <i>Linaria dalmatica</i> (Lamiales, Plantaginaceae). Systematic Entomology, 2011, 36, 741-753.	3.9	46
49	Unifying macroecology and macroevolution to answer fundamental questions about biodiversity. Global Ecology and Biogeography, 2019, 28, 1925-1936.	5.8	44
50	Genetic characterization, distribution and prevalence of avian pox and avian malaria in the Berthelot's pipit (Anthus berthelotii) in Macaronesia. Parasitology Research, 2008, 103, 1435-1443.	1.6	42
51	Mitochondrial Metagenomics Reveals the Ancient Origin and Phylodiversity of Soil Mites and Provides a Phylogeny of the Acari. Molecular Biology and Evolution, 2020, 37, 683-694.	8.9	42
52	Longâ€ŧerm inÂsitu persistence of biodiversity in tropical sky islands revealed by landscape genomics. Molecular Ecology, 2018, 27, 432-448.	3.9	39
53	An integrated model of population genetics and community ecology. Journal of Biogeography, 2019, 46, 816-829.	3.0	37
54	The Diversification of the Genus Nesotes (Coleoptera: Tenebrionidae) in the Canary Islands: Evidence from mtDNA. Molecular Phylogenetics and Evolution, 2001, 21, 321-326.	2.7	35

#	Article	IF	Citations
55	Host-associated genetic differentiation in a seed parasitic weevil Rhinusa antirrhini (Coleptera:) Tj ETQq1 1 0.7 2286-2300.	84314 rgB1 3.9	Overlock 1 (35
56	Molecular phylogenetics of <i>Vanda </i> and related genera (Orchidaceae). Botanical Journal of the Linnean Society, 2013, 173, 549-572.	1.6	33
57	Molecular characterization of trophic ecology within an island radiation of insect herbivores (<scp>C</scp> urculionidae: <scp>E</scp> ntiminae: <i><scp>C</scp>ratopus</i>). Molecular Ecology, 2013, 22, 5441-5455.	3.9	32
58	Validated removal of nuclear pseudogenes and sequencing artefacts from mitochondrial metabarcode data. Molecular Ecology Resources, 2021, 21, 1772-1787.	4.8	32
59	Testing phylogeographic predictions on an active volcanic island: Brachyderes rugatus (Coleoptera:) Tj ETQq1	1 0.784314	∙rg₿Ţ Overlo
60	A combined field survey and molecular identification protocol for comparing forest arthropod biodiversity across spatial scales. Molecular Ecology Resources, 2017, 17, 694-707.	4.8	30
61	Evolution underground: shedding light on the diversification of subterranean insects. Journal of Biology, 2010, 9, 17.	2.7	29
62	Experimental Removal of Sexual Selection Reveals Adaptations to Polyandry in Both Sexes. Evolutionary Biology, 2014, 41, 62-70.	1.1	28
63	Climate drives communityâ€wide divergence within species over a limited spatial scale: evidence from an oceanic island. Ecology Letters, 2020, 23, 305-315.	6.4	28
64	Speciation on islands: what are we learning?. Biological Journal of the Linnean Society, 0, 95, 47-52.	1.6	27
65	The Imprint of Geologic History on Within-Island Diversification of Woodlouse-Hunter Spiders (Araneae, Dysderidae) in the Canary Islands. Journal of Heredity, 2013, 104, 341-356.	2.4	27
66	Lack of support for the timeâ€dependent molecular evolution hypothesis. Molecular Ecology, 2015, 24, 702-709.	3.9	27
67	Numts help to reconstruct the demographic history of the ocellated lizard (<i>Lacerta lepida</i>) in a secondary contact zone. Molecular Ecology, 2012, 21, 1005-1018.	3.9	26
68	Connecting highâ€throughput biodiversity inventories: Opportunities for a siteâ€based genomic framework for global integration and synthesis. Molecular Ecology, 2021, 30, 1120-1135.	3.9	26
69	Discordant patterns of geographic variation between mitochondrial and microsatellite markers in the Mexican black iguana (Ctenosaura pectinata) in a contact zone. Journal of Biogeography, 2011, 38, 1394-1405.	3.0	25
70	Gene Duplication, Population Genomics, and Species-Level Differentiation within a Tropical Mountain Shrub. Genome Biology and Evolution, 2014, 6, 2611-2624.	2.5	25
71	A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities. Molecular Ecology Resources, 2021, 21, 2782-2800.	4.8	24
72	Natural recovery of genetic diversity by gene flow in reforested areas of the endemic Canary Island pine, Pinus canariensis. Forest Ecology and Management, 2007, 244, 122-128.	3.2	23

#	Article	IF	CITATIONS
73	A Bayesian approach to phylogeographic clustering. Interface Focus, 2011, 1, 909-921.	3.0	23
74	Phylogeography and molecular phylogeny of Macaronesian island <i>Tarphius</i> (Coleoptera:) Tj ETQq0 0 0 rgBT	Dyerlock	₹ <u>10</u> Tf 50 7
75	Anagenesis, Cladogenesis, and Speciation on Islands. Trends in Ecology and Evolution, 2018, 33, 488-491.	8.7	22
76	Coming of age for COI metabarcoding of whole organism community DNA: Towards bioinformatic harmonisation. Molecular Ecology Resources, 2022, 22, 847-861.	4.8	22
77	Genetic analysis of a contact zone between two lineages of the ocellated lizard (<i>Lacerta) Tj ETQq1 1 0.784314 Zoological Systematics and Evolutionary Research, 2013, 51, 45-54.</i>	rgBT /Ove	erlock 10 Tf 21
78	Evidence for megaâ€landslides as drivers of island colonization. Journal of Biogeography, 2017, 44, 1053-1064.	3.0	20
79	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
80	PyroClean: Denoising Pyrosequences from Protein-Coding Amplicons for the Recovery of Interspecific and Intraspecific Genetic Variation. PLoS ONE, 2013, 8, e57615.	2.5	19
81	Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: The fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study. Molecular Phylogenetics and Evolution, 2017, 114, 189-198.	2.7	18
82	Canarian land snail diversity: conflict between anatomical and molecular data on the phylogenetic placement of five new species ofNapaeus(Gastropoda, Pulmonata, Enidae). Biological Journal of the Linnean Society, 2006, 89, 169-187.	1.6	17
83	Evidence for multiple founding lineages and genetic admixture in the evolution of species within an oceanic island weevil (Coleoptera, Curculionidae) superâ€radiation. Journal of Biogeography, 2016, 43, 178-191.	3.0	16
84	Biodiversity monitoring using environmental DNA. Molecular Ecology Resources, 2021, 21, 1405-1409.	4.8	15
85	Community metabarcoding reveals the relative role of environmental filtering and spatial processes in metacommunity dynamics of soil microarthropods across a mosaic of montane forests. Molecular Ecology, 2023, 32, 6110-6128.	3.9	15
86	Response to comments on Species diversity can drive speciation. Ecography, 2007, 30, 334-338.	4.5	14
87	Building a Robust, Densely-Sampled Spider Tree of Life for Ecosystem Research. Diversity, 2020, 12, 288.	1.7	14
88	Dispersal ability and its consequences forÂpopulation genetic differentiation andÂdiversification. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220489.	2.6	14
89	Phylogeographic Ancestral Inference Using the Coalescent Model on Haplotype Trees. Journal of Computational Biology, 2012, 19, 745-755.	1.6	13
90	Hostâ€associated genetic divergence and taxonomy in the <i>Rhinusa pilosa</i> <scp>G</scp> yllenhal species complex: an integrative approach. Systematic Entomology, 2015, 40, 268-287.	3.9	13

#	Article	lF	CITATIONS
91	Flightlessness in insects enhances diversification and determines assemblage structure across whole communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202646.	2.6	13
92	Searching for Speciation Genes: Molecular Evidence for Selection Associated with Colour Morphotypes in the Caribbean Reef Fish Genus Hypoplectrus. PLoS ONE, 2011, 6, e20394.	2.5	13
93	Is speciation driven by species diversity? (Reply). Nature, 2005, 438, E2-E2.	27.8	12
94	Cryptic diversity in the Azorean beetle genus Tarphius Erichson, 1845 (Coleoptera: Zopheridae): An integrative taxonomic approach with description of four new species. Zootaxa, 2017, 4236, 401.	0.5	12
95	Community assembly and diversification in a speciesâ€rich radiation of island weevils (Coleoptera:) Tj ETQq1 1 0	.784314 r _{	gBT/Overlock
96			

#	Article	IF	CITATIONS
109	Genetic, morphological, and dietary changes associated with novel habitat colonisation in the <scp>C</scp> anary <scp>I</scp> sland endemic grasshopper <i><scp>A</scp>crostira bellamyi</i> Ecological Entomology, 2014, 39, 703-715.	2.2	7
110	Model misspecification confounds the estimation of rates and exaggerates their time dependency. Molecular Ecology, 2015, 24, 6013-6020.	3.9	7
111	Evaluating species origins within tropical skyâ€islands arthropod communities. Journal of Biogeography, 2021, 48, 2199-2210.	3.0	7
112	Adaptation under a microscope. Nature, 2007, 446, 386-387.	27.8	6
113	Statistical Evaluation of Monophyly in the â€~Broad-Nosed Weevils' through Molecular Phylogenetic Analysis Combining Mitochondrial Genome and Single-Locus Sequences (Curculionidae: Entiminae,) Tj ETQq1 1 0.	7 8 #314 rg	g&T /Overlo
114	Dispersal limitations and longâ€ŧerm persistence drive differentiation from haplotypes to communities within a tropical skyâ€island: Evidence from community metabarcoding. Molecular Ecology, 2021, 30, 6611-6626.	3.9	6
115	Conservation status of chafer beetlesProdontria bicolorataandP. modesta: distribution and ecological observations New Zealand Entomologist, 1994, 17, 3-6.	0.3	5
116	Challenges, advances and perspectives in island biogeography. Frontiers of Biogeography, 2016, 8, .	1.8	5
117	Dispersal limitation: Evolutionary origins and consequences in arthropods. Molecular Ecology, 2019, 28, 3137-3140.	3.9	5
118	Habitat filtering and inferred dispersal ability condition acrossâ€scale species turnover and rarity in Macaronesian island spider assemblages. Journal of Biogeography, 2021, 48, 3131-3144.	3.0	5
119	INTERPRETING COLONIZATION OF THE CALATHUS (COLEOPTERA: CARABIDAE) ON THE CANARY ISLANDS AND MADEIRA THROUGH THE APPLICATION OF THE PARAMETRIC BOOTSTRAP. Evolution; International Journal of Organic Evolution, 2000, 54, 2081.	2.3	4
120	Characterization of microsatellite loci in Brachyderes rugatus, the Canary Islands pine weevil (Coleoptera: Curculionidae). Molecular Ecology Notes, 2006, 6, 820-822.	1.7	4
121	Isolation and characterization of polymorphic microsatellite markers in the black spiny tailed iguana (<i>Ctenosaura pectinata</i>) and their crossâ€utility in other <i>Ctenosaura</i> . Molecular Ecology Resources, 2009, 9, 117-119.	4.8	4
122	Predominance of single paternity in the black spiny-tailed iguana: conservation genetic concerns for female-biased hunting. Conservation Genetics, 2010, 11, 1645-1652.	1.5	4
123	Lack of support for Rensch's rule in an intraspecific test using red flour beetle (<i>Tribolium) Tj ETQq1 1 0.784314</i>	rgBT/Ov	erlock 10 Tf
124	Evolution of host plant use and diversification in a species complex of parasitic weevils (Coleoptera:) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf
125	Introgressive hybridization in a Spiny-Tailed Iguana, <i>Ctenosaura pectinata </i> , and its implications for taxonomy and conservation. Peerl, 2019, 7, e6744.	2.0	4
126	COLONIZATION AND DIVERSIFICATION OF THE SPECIES BRACHYDERES RUGATUS (COLEOPTERA) ON THE CANARY ISLANDS: EVIDENCE FROM MITOCHONDRIAL DNA COII GENE SEQUENCES. Evolution; International Journal of Organic Evolution, 2000, 54, 911.	2.3	3

#	Article	IF	CITATIONS
127	Characterization of polymorphic microsatellites in the castration parasite plant-ant Allomerus octoarticulatus cf. demerarae (Formicidae: Myrmicinae). Molecular Ecology Notes, 2006, 6, 182-184.	1.7	3
128	Distinguishing between hot-spots and melting-pots of genetic diversity using haplotype connectivity. Algorithms for Molecular Biology, 2010, 5, 19.	1.2	2
129	Babies, Bathwater, and Straw Men? Not Quite: A Response to Meiri et al Trends in Ecology and Evolution, 2018, 33, 896-897.	8.7	2
130	PCR primers for polymorphic microsatellite loci in the plant-antAzteca ulei cordiae(Formicidae:) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 62
131	Comment on Rieux and Balloux: calibration from tipâ€dating can compromise topological accuracy and evolutionary inference. Molecular Ecology, 2017, 26, 2623-2624.	3.9	1
132	Evidence for the Pleistocene persistence of Collembola in Great Britain. Journal of Biogeography, 2019, 46, 1479-1493.	3.0	1
133	Revealing community assembly through barcoding: Mediterranean butterflies and dispersal variation. Journal of Animal Ecology, 2020, 89, 1992-1996.	2.8	0