
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9128830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Air-stable Ir-(P-Phos) complex for highly enantioselective hydrogenation of quinolines and their immobilization in poly(ethylene glycol) dimethyl ether (DMPEG). Chemical Communications, 2005, , 1390.	4.1	158
2	Asymmetric Hydrogenation of Quinoxalines with Diphosphinite Ligands: A Practical Synthesis of Enantioenriched, Substituted Tetrahydroquinoxalines. Angewandte Chemie - International Edition, 2009, 48, 9135-9138.	13.8	155
3	Air-Stable and Phosphine-Free Iridium Catalysts for Highly Enantioselective Hydrogenation of Quinoline Derivatives. Organic Letters, 2008, 10, 5265-5268.	4.6	152
4	Asymmetric hydrogenation of quinolines with high substrate/catalyst ratio. Chemical Communications, 2007, , 613-615.	4.1	122
5	Highly Enantioselective Iridium-Catalyzed Hydrogenation of Quinoline Derivatives Using Chiral Phosphinite H8-BINAPO. Advanced Synthesis and Catalysis, 2005, 347, 1755-1758.	4.3	110
6	Highly Enantioselective Hydrogenation of Quinoline and Pyridine Derivatives with Iridiumâ€(Pâ€Phos) Catalyst. Advanced Synthesis and Catalysis, 2010, 352, 1055-1062.	4.3	100
7	Highly efficient and enantioselective hydrogenation of quinolines and pyridines with Ir-Difluorphos catalyst. Organic and Biomolecular Chemistry, 2010, 8, 3464.	2.8	97
8	Asymmetric Hydrogenation of 2- and 2,3-Substituted Quinoxalines with Chiral Cationic Ruthenium Diamine Catalysts. Organic Letters, 2011, 13, 6568-6571.	4.6	89
9	Versatile (Pentamethylcyclopentadienyl)rhodiumâ€2,2â€2â€Bipyridine (Cp*Rhâ€bpy) Catalyst for Transfer Hydrogenation of Nâ€Heterocycles in Water. Advanced Synthesis and Catalysis, 2015, 357, 3529-3537.	4.3	73
10	Titanium-Catalyzed Tandem Sulfoxidation-Kinetic Resolution Process: A Convenient Method for Higher Enantioselectivities and Yields of Chiral Sulfoxide. Advanced Synthesis and Catalysis, 2004, 346, 723-726.	4.3	61
11	Metal-free tandem cyclization/hydrosilylation to construct tetrahydroquinoxalines. Green Chemistry, 2018, 20, 403-411.	9.0	58
12	The Role of Spacers between Carboxylate Groups in Self-Assembly Process: Syntheses and Characterizations of Two Novel Cadmium(II) Complexes Derived from Mixed Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 37-43.	2.0	57
13	pH-Regulated transfer hydrogenation of quinoxalines with a Cp*Ir–diamine catalyst in aqueous media. Tetrahedron, 2011, 67, 6206-6213.	1.9	57
14	Rh(i)-catalyzed decarbonylative direct C2-olefination of indoles with vinyl carboxylic acids. Chemical Communications, 2014, 50, 12385-12388.	4.1	56
15	Rhodium(III)â€Catalyzed Direct CH Olefination of Arenes with Aliphatic Olefins. Advanced Synthesis and Catalysis, 2016, 358, 573-583.	4.3	54
16	B(C ₆ F ₅) ₃ â€Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane. Advanced Synthesis and Catalysis, 2019, 361, 2301-2308.	4.3	49
17	Rhodium(III)-Catalyzed Oxidative Annulation of 2,2′-Bipyridine N-Oxides with Alkynes via Dual C–H Bond Activation. Organic Letters, 2018, 20, 3843-3847.	4.6	48
18	Rhodium atalyzed Decarbonylative Direct C2â€Arylation of Indoles with Aryl Carboxylic Acids. ChemCatChem, 2014, 6, 3069-3074.	3.7	47

#	Article	IF	CITATIONS
19	Rhodium(<scp>i</scp>)-catalyzed C6-selective C–H alkenylation and polyenylation of 2-pyridones with alkenyl and conjugated polyenyl carboxylic acids. Chemical Science, 2019, 10, 10089-10096.	7.4	47
20	New Types of Homochiral Helical Coordination Polymers Constructed byexo-Bidentate Binaphthol Derivatives. European Journal of Inorganic Chemistry, 2004, 2004, 1595-1599.	2.0	46
21	Polyethylene Clycol as an Environmentally Friendly and Recyclable Reaction Medium for Enantioselective Hydrogenation. Advanced Synthesis and Catalysis, 2006, 348, 2172-2182.	4.3	46
22	A versatile rhodium(<scp>iii</scp>) catalyst for direct acyloxylation of aryl and alkenyl C–H bonds with carboxylic acids. Organic Chemistry Frontiers, 2018, 5, 415-422.	4.5	46
23	Highly efficient chemoselective construction of 2,2-dimethyl-6-substituted 4-piperidones via multi-component tandem Mannich reaction in ionic liquids. Green Chemistry, 2010, 12, 949.	9.0	40
24	Multicomponent Self-Assembled Metal–Organic [3]Rotaxanes. Journal of the American Chemical Society, 2015, 137, 12966-12976.	13.7	37
25	Rh(I)-Catalyzed C6-Selective Decarbonylative Alkylation of 2-Pyridones with Alkyl Carboxylic Acids and Anhydrides. Organic Letters, 2020, 22, 4228-4234.	4.6	37
26	Rhodium atalyzed Decarbonylative Direct Olefination of Arenes with Vinyl Carboxylic Acids. Advanced Synthesis and Catalysis, 2015, 357, 1229-1236.	4.3	34
27	Palladiumâ€Catalyzed Highly Regioselective Arylation of Allylamines with Thiophenes and Furans. Advanced Synthesis and Catalysis, 2012, 354, 3225-3230.	4.3	32
28	Rhodium(<scp>i</scp>)-catalysed decarbonylative direct C–H vinylation and dienylation of arenes. Organic Chemistry Frontiers, 2018, 5, 734-740.	4.5	32
29	Highly Air- and Water-Stable Fluorinated Ferrocenylphosphine-Aminophosphine Ligands and their Applications in Asymmetric Hydrogenations. Advanced Synthesis and Catalysis, 2005, 347, 1904-1908.	4.3	31
30	Cobalt(III)-Catalyzed Regioselective C6 Olefination of 2-Pyridones Using Alkynes: Olefination/Directing Group Migration and Olefination. Organic Letters, 2021, 23, 4624-4629.	4.6	31
31	Syntheses and Characterizations of Metal-Organic Frameworks with Unusual Topologies Derived from Flexible Dipyridyl Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 3751.	2.0	27
32	Palladium atalyzed Regioselective and Stereoselective Oxidative Heck Arylation of Allylamines with Arylboronic Acids. Advanced Synthesis and Catalysis, 2013, 355, 1570-1578.	4.3	26
33	Direct synthesis of 8-aryl tetrahydroquinolines via pd-catalyzed ortho-arylation of arylureas in water. RSC Advances, 2013, 3, 1025-1028.	3.6	25
34	lridium atalyzed Transfer Hydrogenation of 1,10â€Phenanthrolines using Formic Acid as the Hydrogen Source. Advanced Synthesis and Catalysis, 2016, 358, 567-572.	4.3	25
35	Ru atalyzed Deoxygenative Transfer Hydrogenation of Amides to Amines with Formic Acid/Triethylamine. Advanced Synthesis and Catalysis, 2019, 361, 3800-3806.	4.3	23
36	Ruthenium(II)-Catalyzed Regioselective C-8 Hydroxylation of 1,2,3,4-Tetrahydroquinolines. Organic Letters, 2018, 20, 6799-6803.	4.6	21

#	Article	IF	CITATIONS
37	Metal-Directed Stereoselective Syntheses of Homochiral Complexes ofexo-Bidentate Binaphthol Derivatives. European Journal of Inorganic Chemistry, 2005, 2005, 751-758.	2.0	20
38	FeCl ₃ â€Catalyzed SF ₅ â€Containing Quinoline Synthesis: Threeâ€Component Coupling Reactions of SF ₅ â€Anilines, Aldehydes and Alkynes. European Journal of Organic Chemistry, 2015, 2015, 1415-1418.	2.4	20
39	Macrolactonization of Alkynyl Alcohol through Rh(I)/Yb(III) Catalysis. Organic Letters, 2018, 20, 6534-6538.	4.6	20
40	Manganese(I)â€Catalyzed Siteâ€Selective C6â€Alkenylation of 2â€Pyridones Using Alkynes via Câ^'H Activation. Advanced Synthesis and Catalysis, 2021, 363, 2586-2593.	4.3	20
41	Palladium atalyzed, Highly Efficient, Regiocontrolled Arylation of Electronâ€Rich Allylamines with Aryl Halides. Advanced Synthesis and Catalysis, 2012, 354, 899-907.	4.3	18
42	Rhodium(III) atalyzed Selective Direct Olefination of Imidazoles. Advanced Synthesis and Catalysis, 2018, 360, 985-994.	4.3	18
43	Rhodium(III)â€Catalyzed Câ^'H Bond Functionalization of 2â€Pyridones with Alkynes: Switchable Alkenylation, Alkenylation/Directing Group Migration and Rollover Annulation. Chemistry - A European Journal, 2021, 27, 8811-8821.	3.3	17
44	Regio†and Stereoselective Synthesis of 1,2,3â€Trisubstituted Indanes from Diarylmethanols and Allylamides through Iron(III) Chloride Hexahydrate. Advanced Synthesis and Catalysis, 2016, 358, 2148-2155.	4.3	16
45	Rhodium(I)-catalyzed Decarbonylative Direct Olefination of 6-Arylpurines with Vinyl Carboxylic Acids Directed by the Purinyl N1 Atom. ChemistrySelect, 2016, 1, 653-658.	1.5	16
46	BF ₃ ·Et ₂ O as a metal-free catalyst for direct reductive amination of aldehydes with amines using formic acid as a reductant. Green Chemistry, 2021, 23, 5205-5211.	9.0	16
47	From CO ₂ to 4 <i>H</i> -Quinolizin-4-ones: A One-Pot Multicomponent Approach via Ag ₂ O/Cs ₂ CO ₃ Orthogonal Tandem Catalysis. Journal of Organic Chemistry, 2018, 83, 9561-9567.	3.2	15
48	Palladium atalyzed Highly Regioselective Mizoroki–Heck Arylation of Allylamines with Aryl Chlorides. ChemCatChem, 2014, 6, 311-318.	3.7	14
49	Palladium atalyzed Direct Arylation of Allylamines with Simple Arenes. ChemCatChem, 2015, 7, 1275-1279.	3.7	14
50	Efficient dealkylation of aryl alkyl ethers catalyzed by Cu 2 O. Tetrahedron, 2018, 74, 2447-2453.	1.9	14
51	Palladium-catalyzed highly regioselective and stereoselective decarboxylative arylation of unactivated olefins with aryl carboxylic acids. Tetrahedron, 2017, 73, 2242-2249.	1.9	12
52	Rhodium(I) atalyzed C2‧elective Decarbonylative Câ^'H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides. Asian Journal of Organic Chemistry, 2021, 10, 879-885.	2.7	12
53	Rh(I)â€Catalyzed Direct C6â^'H Arylation of 2â€Pyridones with Aryl Carboxylic Acids. Advanced Synthesis and Catalysis, 2021, 363, 3995-4001.	4.3	12
54	Catalytic asymmetric addition reactions leading to carbon-carbon bond formation: Phenyl and alkenyl transfer to aldehydes and alkynylation of α-imino esters. Pure and Applied Chemistry, 2006, 78, 267-274.	1.9	11

#	Article	IF	CITATIONS
55	Formation of a palladium(ii) complex of 2-(2-pyridinylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl with novel Cσ-coordination and its theoretical investigation. Chemical Communications, 2003, , 1666-1667.	4.1	10
56	Cobalt atalyzed Selective Transformation of Levulinic Acid and Amines into Pyrrolidines and Pyrrolidinones using Hydrogen. Advanced Synthesis and Catalysis, 2022, 364, 2830-2836.	4.3	10
57	Palladium-catalyzed benzylic C(sp ³)–H carbonylative arylation of azaarylmethyl amines with aryl bromides. Chemical Science, 2021, 12, 10862-10870.	7.4	9
58	Rhodium(III) atalyzed Regioselective Câ^'H Annulation and Alkenylation of 2â€Pyridones with Terminal Alkynes. Advanced Synthesis and Catalysis, 2022, 364, 1264-1270.	4.3	9
59	Iridium-catalysed conjugated alkynylation of α,β-unsaturated amide through alkene isomerization. Organic Chemistry Frontiers, 2018, 5, 1815-1819.	4.5	7
60	Rh(III)â€catalyzed C6â€selective Acylmethylation and Carboxymethylation of 2â€Pyridones with Diazo Compounds. ChemCatChem, 2021, 13, 1730-1737.	3.7	6
61	One-Pot Synthesis of 3-Substituted 4 <i>H</i> -Quinolizin-4-ones via Alkyne Substrate Control Strategy. Journal of Organic Chemistry, 2021, 86, 3648-3655.	3.2	6
62	Metalâ€Free Tandem Oneâ€Pot Construction of 3,3â€Disubsituted 3,4â€Dihydroquinoxalinâ€2(1 <i>H</i>)â€One under Visibleâ€Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 658-664.	²⁵ 4.3	6
63	Synthesis of <scp>Ï€â€Extended</scp> Carbazoles via <scp>Oneâ€Pot</scp> C—C Coupling and Chlorination Promoted by <scp>FeCl₃</scp> . Chinese Journal of Chemistry, 2020, 38, 1538-1544.	4.9	5
64	G-quadruplex induced chirality of methylazacalix[6]pyridine via unprecedented binding stoichiometry: en route to multiplex controlled molecular switch. Scientific Reports, 2015, 5, 10479.	3.3	4
65	Na2S2O8â€Mediated Tandem Oneâ€Pot Construction of 3,3â€Disubsituted 3,4â€Dihydroquinoxalinâ€2(1H)â€o with 4â€Alkylâ€1,4â€dihydropyridines as Alkyl Radical Sources. Asian Journal of Organic Chemistry, 0, , .	nes 2.7	4
66	Synergistic regulation of nonbinary molecular switches by protonation and light. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
67	Metalâ€Free Reductive Amination of Ketones with Amines Using Formic Acid as the Reductant under BF ₃ â< Et ₂ O Catalysis. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	4
68	Ligandâ€Promoted Rh ^I â€Catalyzed C2â€Selective Câ^'H Alkenylation and Polyenylation of Imidazoles with Alkenyl Carboxylic Acids. Chemistry - A European Journal, 2022, 28, .	3.3	3
69	Stabilizing G-quadruplex DNA by methylazacalix[n]pyridine through shape-complementary interaction. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 609-612.	2.2	2
70	Front Cover Picture: Rhodium(III)-Catalyzed Direct CH Olefination of Arenes with Aliphatic Olefins (Adv. Synth. Catal. 4/2016). Advanced Synthesis and Catalysis, 2016, 358, 507-507.	4.3	1
71	Ruthenium Catalyzed Asymmetric Hydrogenation of α- and β-Ketoesters in Room Temperature Ionic Liquids Using Chiral P-Phos Ligand. ACS Symposium Series, 2007, , 224-234.	0.5	0
72	Substrate-induced adjustment of "slipped― <i>ï€</i> – <i>ï€</i> stacking: en route to obtain 1D sandwich chain and higher order self-assembly supramolecular structures in solid state. Supramolecular Chemistry, 2017, 29, 24-31.	1.2	0

#	Article	IF	CITATIONS
73	Front Cover Picture: B(C ₆ F ₅) ₃ â€Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane (Adv. Synth. Catal. 10/2019). Advanced Synthesis and Catalysis, 2019, 361, 2159-2159.	4.3	0
74	A Mild Silica Gel Promoted Synthesis and Initial Functional Study of Tetrapyridyl Tetrahydropyrrolopyrrolones. Organic Letters, 2022, 24, 5397-5401.	4.6	0