Adriana GalvÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/912878/publications.pdf

Version: 2024-02-01

69 papers 5,443 citations

30 h-index 95218 68 g-index

70 all docs

70 docs citations

70 times ranked

6546 citing authors

#	Article	IF	CITATIONS
1	Earlier Development of the Accumbens Relative to Orbitofrontal Cortex Might Underlie Risk-Taking Behavior in Adolescents. Journal of Neuroscience, 2006, 26, 6885-6892.	1.7	1,084
2	Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 2020, 582, 84-88.	13.7	634
3	Risk-taking and the adolescent brain: who is at risk?. Developmental Science, 2007, 10, F8-F14.	1.3	462
4	The effects of poor quality sleep on brain function and risk taking in adolescence. Neurolmage, 2013, 71, 275-283.	2.1	211
5	Stress and the adolescent brain. Neuroscience and Biobehavioral Reviews, 2016, 70, 217-227.	2.9	210
6	When Is an Adolescent an Adult? Assessing Cognitive Control in Emotional and Nonemotional Contexts. Psychological Science, 2016, 27, 549-562.	1.8	202
7	The Role of Ventral Frontostriatal Circuitry in Reward-Based Learning in Humans. Journal of Neuroscience, 2005, 25, 8650-8656.	1.7	182
8	An Upside to Reward Sensitivity: The Hippocampus Supports Enhanced Reinforcement Learning in Adolescence. Neuron, 2016, 92, 93-99.	3.8	181
9	The Teenage Brain. Current Directions in Psychological Science, 2013, 22, 88-93.	2.8	169
10	Beyond simple models of adolescence to an integrated circuit-based account: A commentary. Developmental Cognitive Neuroscience, 2016, 17, 128-130.	1.9	158
11	Neural plasticity of development and learning. Human Brain Mapping, 2010, 31, 879-890.	1.9	129
12	Sleep variability in adolescence is associated with altered brain development. Developmental Cognitive Neuroscience, 2015, 14, 16-22.	1.9	116
13	The quality of adolescents' peer relationships modulates neural sensitivity to risk taking. Social Cognitive and Affective Neuroscience, 2015, 10, 389-398.	1.5	103
14	Longitudinal Changes in Prefrontal Cortex Activation Underlie Declines in Adolescent Risk Taking. Journal of Neuroscience, 2015, 35, 11308-11314.	1.7	101
15	Neural Correlates of Response Inhibition and Cigarette Smoking in Late Adolescence. Neuropsychopharmacology, 2011, 36, 970-978.	2.8	97
16	Teens Impulsively React rather than Retreat from Threat. Developmental Neuroscience, 2014, 36, 220-227.	1.0	87
17	Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning. Journal of Neuroscience, 2018, 38, 2442-2453.	1.7	82
18	The Need for Sleep in the Adolescent Brain. Trends in Cognitive Sciences, 2020, 24, 79-89.	4.0	74

#	Article	IF	CITATIONS
19	Buffering effect of positive parent–child relationships on adolescent risk taking: A longitudinal neuroimaging investigation. Developmental Cognitive Neuroscience, 2015, 15, 26-34.	1.9	70
20	At risk of being risky: The relationship between "brain age―under emotional states and risk preference. Developmental Cognitive Neuroscience, 2017, 24, 93-106.	1.9	65
21	The use of functional and effective connectivity techniques to understand the developing brain. Developmental Cognitive Neuroscience, 2015, 12, 155-164.	1.9	60
22	Forgetting the best when predicting the worst: Preliminary observations on neural circuit function in adolescent social anxiety. Developmental Cognitive Neuroscience, 2015, 13, 21-31.	1.9	57
23	Becoming a sexual being: The â€~elephant in the room' of adolescent brain development. Developmental Cognitive Neuroscience, 2017, 25, 209-220.	1.9	56
24	Sleep quality and adolescent default mode network connectivity. Social Cognitive and Affective Neuroscience, 2018, 13, 290-299.	1.5	56
25	Greater risk sensitivity of dorsolateral prefrontal cortex in young smokers than in nonsmokers. Psychopharmacology, 2013, 229, 345-355.	1.5	51
26	Socioeconomic hardship and delayed reward discounting: Associations with working memory and emotional reactivity. Developmental Cognitive Neuroscience, 2019, 37, 100642.	1.9	49
27	The cognitive and neurobiological effects of daily stress in adolescents. NeuroImage, 2014, 92, 267-273.	2.1	48
28	Daily stress increases risky decisionâ€making in adolescents: A preliminary study. Developmental Psychobiology, 2012, 54, 433-440.	0.9	40
29	Considerations for imaging the adolescent brain. Developmental Cognitive Neuroscience, 2012, 2, 293-302.	1.9	39
30	Combined effects of peer presence, social cues, and rewards on cognitive control in adolescents. Developmental Psychobiology, 2018, 60, 292-302.	0.9	39
31	Adolescence, brain maturation and mental health. Nature Neuroscience, 2017, 20, 503-504.	7.1	36
32	Frontostriatal development and probabilistic reinforcement learning during adolescence. Neurobiology of Learning and Memory, 2017, 143, 1-7.	1.0	34
33	Bedtime Autonomy and Cellphone Use Influence Sleep Duration in Adolescents. Journal of Adolescent Health, 2019, 64, 124-130.	1.2	30
34	Schoolâ€Based Sex Education and Neuroscience: What We Know About Sex, Romance, Marriage, and Adolescent Brain Development. Journal of School Health, 2015, 85, 567-574.	0.8	28
35	The Impact of Emotional States on Cognitive Control Circuitry and Function. Journal of Cognitive Neuroscience, 2016, 28, 446-459.	1,1	28
36	Adolescentsââ,¬â,,¢ emotional competence is associated with parentsââ,¬â,,¢ neural sensitivity to emotions. Frontiers in Human Neuroscience, 2014, 8, 558.	1.0	27

#	Article	IF	Citations
37	Neural connectivity moderates the association between sleep and impulsivity in adolescents. Developmental Cognitive Neuroscience, 2017, 27, 35-44.	1.9	26
38	Acute stress increases risky decisions and dampens prefrontal activation among adolescent boys. Neurolmage, 2017, 146, 679-689.	2.1	25
39	NEURAL CORRELATES OF RISKY DECISION MAKING IN ANXIOUS YOUTH AND HEALTHY CONTROLS. Depression and Anxiety, 2014, 31, 591-598.	2.0	24
40	Links between parental depression and longitudinal changes in youths' neural sensitivity to rewards. Social Cognitive and Affective Neuroscience, 2016, 11, 1262-1271.	1.5	21
41	Sleep duration moderates the association between insula activation and risky decisions under stress in adolescents and adults. Neuropsychologia, 2017, 95, 119-129.	0.7	21
42	Parents Versus Peers: Assessing the Impact of Social Agents on Decision Making in Young Adults. Psychological Science, 2018, 29, 1526-1539.	1.8	21
43	Parenting and Salience Network Connectivity Among African Americans: A Protective Pathway for Health-Risk Behaviors. Biological Psychiatry, 2018, 84, 365-371.	0.7	18
44	FDA cigarette warning labels lower craving and elicit frontoinsular activation in adolescent smokers. Social Cognitive and Affective Neuroscience, 2015, 10, 1484-1496.	1.5	15
45	Eye blink rate predicts reward decisions in adolescents. Developmental Science, 2017, 20, e12412.	1.3	15
46	Greater response variability in adolescents is associated with increased white matter development. Social Cognitive and Affective Neuroscience, 2017, 12, 436-444.	1.5	15
47	Neural response to prosocial scenes relates to subsequent giving behavior in adolescents: A pilot study. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 342-352.	1.0	13
48	Evidence from a Randomized Controlled Trial that Altruism Moderates the Effect of Prosocial Acts on Adolescent Well-being. Journal of Youth and Adolescence, 2021, 50, 29-43.	1.9	12
49	Neural activity moderates the association between sleep and risky driving behaviors in adolescence. Developmental Cognitive Neuroscience, 2020, 43, 100790.	1.9	11
50	Neural Sensitivity to Smoking Stimuli Is Associated With Cigarette Craving in Adolescent Smokers. Journal of Adolescent Health, 2016, 58, 186-194.	1.2	10
51	Distinct and similar patterns of emotional development in adolescents and young adults. Developmental Psychobiology, 2020, 62, 591-599.	0.9	10
52	Threat or thrill? the neural mechanisms underlying the development of anxiety and risk taking in adolescence. Developmental Cognitive Neuroscience, 2020, 45, 100841.	1.9	9
53	Diminished cortical response to risk and loss during risky decision making in alcohol use disorder. Drug and Alcohol Dependence, 2021, 218, 108391.	1.6	9
54	Is social decision making for close others consistent across domains and within individuals?. Journal of Experimental Psychology: General, 2020, 149, 1509-1526.	1.5	9

#	Article	IF	CITATIONS
55	Worth working for: The influence of effort costs on teens' choices during a novel decision making game. Developmental Cognitive Neuroscience, 2019, 37, 100652.	1.9	8
56	Brain and Behavior Correlates of Risk Taking in Pediatric Anxiety Disorders. Biological Psychiatry, 2021, 89, 707-715.	0.7	8
57	Physical home environment is associated with prefrontal cortical thickness in adolescents. Developmental Science, 2019, 22, e12834.	1.3	7
58	Neural recruitment related to threat perception differs as a function of adolescent sleep. Developmental Science, 2020, 23, e12933.	1.3	7
59	The Unrested Adolescent Brain. Child Development Perspectives, 2019, 13, 141-146.	2.1	6
60	Individual differences in accumbofrontal tract integrity relate to risky decisions under stress in adolescents and adults. Developmental Cognitive Neuroscience, 2020, 45, 100859.	1.9	5
61	Neurobiological responses in the adolescent striatum to being  tested'. Social Cognitive and Affective Neuroscience, 2019, 14, 03-12.	1.5	4
62	Resting parasympathetic nervous system activity is associated with greater antiviral gene expression. Brain, Behavior, and Immunity, 2021, 98, 310-316.	2.0	4
63	Contextual modulation of medial prefrontal cortex to neutral faces in anxious adolescents. Biology of Mood & Anxiety Disorders, 2013, 3, 18.	4.7	3
64	Dorsolateral prefrontal cortex response to negative tweets relates to executive functioning. Social Cognitive and Affective Neuroscience, 2020, 15, 775-787.	1.5	3
65	Neural correlates of emotional reactivity and regulation in youth with and without anxiety. Depression and Anxiety, 2021, 38, 804-815.	2.0	3
66	Computational and motivational mechanisms of human social decision making involving close others. Journal of Experimental Social Psychology, 2021, 93, 104086.	1.3	2
67	Understanding the Neuroscience Underpinnings of Obesity and Depression: Implications for Policy Development and Public Health Practice. Frontiers in Public Health, 2021, 9, 714236.	1.3	2
68	Characterizing trajectories of anxiety, depression, and criminal offending in male adolescents over the 5 years following their first arrest. Development and Psychopathology, 2022, , 1-17.	1.4	2
69	Frontopolar Cortex Response to Positive Feedback Relates to Nonincentivized Task Persistence. Cerebral Cortex, 2021, , .	1.6	O