Paulina Jackowiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9128732/publications.pdf

Version: 2024-02-01

687335 677123 25 514 13 22 citations h-index g-index papers 26 26 26 944 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	1
2	Expression Landscape of circRNAs in Arabidopsis thaliana Seedlings and Adult Tissues. Frontiers in Plant Science, 2020, 11, 576581.	3 . 6	11
3	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
4	Arabidopsis thaliana cbp80, c2h2, and flk Knockout Mutants Accumulate Increased Amounts of Circular RNAs. Cells, 2020, 9, 1937.	4.1	7
5	Functional characterization of RNA fragments using high-throughput interactome screening. Journal of Proteomics, 2019, 193, 173-183.	2.4	6
6	Effects of G-quadruplex topology on translational inhibition by tRNA fragments in mammalian and plant systems in vitro. International Journal of Biochemistry and Cell Biology, 2017, 92, 148-154.	2.8	21
7	Mutations in human AID differentially affect its ability to deaminate cytidine and 5-methylcytidine in ssDNA substrates in vitro. Scientific Reports, 2017, 7, 3873.	3.3	7
8	Small RNA fragments derived from multiple RNA classes – the missing element of multi-omics characteristics of the hepatitis C virus cell culture model. BMC Genomics, 2017, 18, 502.	2.8	17
9	RNA-Seq-based analysis of differential gene expression associated with hepatitis C virus infection in cell culture. Acta Biochimica Polonica, 2017, 63, 789-798.	0.5	5
10	Computational prediction of nonenzymatic RNA degradation patterns. Acta Biochimica Polonica, 2017, 63, 745-751.	0.5	4
11	Copy number variation of genes involved in the hepatitis C virus-human interactome. Scientific Reports, 2016, 6, 31340.	3.3	10
12	Production of an active human AID enzyme in a bacterial system. Biotechnologia, 2016, 3, 235-239.	0.9	0
13	Phylogeny and molecular evolution of the hepatitis C virus. Infection, Genetics and Evolution, 2014, 21, 67-82.	2.3	59
14	Multi-agent model of hepatitis C virus infection. Artificial Intelligence in Medicine, 2014, 60, 123-131.	6.5	17
15	Identification of stable, high copy number, medium-sized RNA degradation intermediates that accumulate in plants under non-stress conditions. Plant Molecular Biology, 2013, 83, 191-204.	3.9	36
16	Evolution of hepatitis C virus hypervariable region 1 in chronically infected children. Virus Research, 2012, 167, 380-384.	2.2	9
17	2D-PAGE as an effective method of RNA degradome analysis. Molecular Biology Reports, 2012, 39, 139-146.	2.3	14
18	Single mutation converts mild pathotype of the Pepino mosaic virus into necrotic one. Virus Research, 2011, 159, 57-61.	2.2	42

#	Article	IF	CITATION
19	RNA degradomeits biogenesis and functions. Nucleic Acids Research, 2011, 39, 7361-7370.	14.5	49
20	Mechanisms Involved in the Development of Chronic Hepatitis C as Potential Targets of Antiviral Therapy. Current Pharmaceutical Biotechnology, 2011, 12, 1774-1780.	1.6	13
21	Pepino Mosaic Virus - A Pathogen of Tomato Crops in Poland: Biology, Evolution and Diagnostics. Journal of Plant Protection Research, 2010, 50, .	1.0	11
22	Hepatitis C virus quasispecies in chronically infected children subjected to interferon–ribavirin therapy. Archives of Virology, 2010, 155, 1977-1987.	2.1	18
23	Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes, 2010, 41, 260-267.	1.6	18
24	Towards Prediction of HCV Therapy Efficiency. Computational and Mathematical Methods in Medicine, 2010, 11, 185-199.	1.3	9
25	Human- and Virus-Encoded microRNAs as Potential Targets of Antiviral Therapy. Mini-Reviews in Medicinal Chemistry, 2009, 9, 927-937.	2.4	20