Jason M Rihel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9128486/publications.pdf

Version: 2024-02-01

	257101	377514
5,046	24	34
citations	h-index	g-index
51	51	6351
		citing authors
		0
	5,046 citations 51 docs citations	5,046 24 h-index 51 51

#	Article	IF	CITATIONS
1	Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs. Science, 2006, 312, 75-79.	6.0	1,405
2	Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation. Science, 2010, 327, 348-351.	6.0	681
3	Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish. Journal of Neuroscience, 2006, 26, 13400-13410.	1.7	430
4	Single-Cell Transcriptional Analysis of Neuronal Progenitors. Neuron, 2003, 38, 161-175.	3.8	241
5	Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia. Nature Communications, 2016, 7, 11601.	5.8	233
6	From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response. Cell, 2016, 167, 947-960.e20.	13.5	211
7	Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron, 2016, 89, 725-733.	3.8	170
8	Zebrafish TRPA1 Channels Are Required for Chemosensation But Not for Thermosensation or Mechanosensory Hair Cell Function. Journal of Neuroscience, 2008, 28, 10102-10110.	1.7	153
9	A Behavioral Assay to Measure Responsiveness of Zebrafish to Changes in Light Intensities. Journal of Visualized Experiments, 2008, , .	0.2	147
10	A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. ELife, 2021, 10 , .	2.8	131
11	OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19126-19131.	3.3	127
12	An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Research, 2015, 25, 1666-1679.	2.4	121
13	Behavioral screening for neuroactive drugs in zebrafish. Developmental Neurobiology, 2012, 72, 373-385.	1.5	103
14	Zebrafish larvae lose vision at night. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6034-6039.	3.3	94
15	Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development. ELife, 2017, 6, .	2.8	93
16	TheDrosophila double-timeSMutation Delays the Nuclear Accumulation ofperiodProtein and Affects the Feedback Regulation ofperiodmRNA. Journal of Neuroscience, 2001, 21, 7117-7126.	1.7	84
17	A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron, 2016, 89, 842-856.	3.8	81
18	Monitoring Sleep and Arousal in Zebrafish. Methods in Cell Biology, 2010, 100, 281-294.	0.5	75

#	Article	IF	CITATIONS
19	Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Current Biology, 2017, 27, 3796-3811.e5.	1.8	61
20	The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neuroscience and Biobehavioral Reviews, 2018, 85, 176-190.	2.9	57
21	The Neuropeptide Galanin Is Required for Homeostatic Rebound Sleep following Increased Neuronal Activity. Neuron, 2019, 104, 370-384.e5.	3.8	50
22	Light-Dependent Regulation of Sleep and Wake States by Prokineticin 2 in Zebrafish. Neuron, 2017, 95, 153-168.e6.	3.8	43
23	Sites of action of sleep and wake drugs: insights from model organisms. Current Opinion in Neurobiology, 2013, 23, 831-840.	2.0	35
24	Single-cell transcriptional profiles and spatial patterning of the mammalian olfactory epithelium. International Journal of Developmental Biology, 2005, 49, 201-207.	0.3	35
25	Zebrafish sleep: from geneZZZ to neuronZZZ. Current Opinion in Neurobiology, 2017, 44, 65-71.	2.0	31
26	Pitpnc1a Regulates Zebrafish Sleep and Wake Behavior through Modulation of Insulin-like Growth Factor Signaling. Cell Reports, 2018, 24, 1389-1396.	2.9	24
27	Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathologica, 2020, 139, 383-401.	3.9	24
28	Sleep is bi-directionally modified by amyloid beta oligomers. ELife, 2020, 9, .	2.8	24
29	Copper on the brain. Nature Chemical Biology, 2018, 14, 638-639.	3.9	20
30	Diverse species-specific phenotypic consequences of loss of function sorting nexin 14 mutations. Scientific Reports, 2020, 10, 13763.	1.6	15
31	Hierarchical Compression Reveals Sub-Second to Day-Long Structure in Larval Zebrafish Behavior. ENeuro, 2020, 7, ENEURO.0408-19.2020.	0.9	12
32	Zebrafish., 2016,, 4071-4155.		6
33	Loss of <i>slc39a14</i> causes simultaneous manganese hypersensitivity and deficiency in zebrafish. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	4
34	Sleep circuits and physiology in non-mammalian systems. Current Opinion in Physiology, 2020, 15, 245-255.	0.9	3
35	Modeling autism spectrum disorders in zebrafish. , 2020, , 451-480.		2
36	Zebrafish. , 2015, , 1-102.		2

#	Article	IF	CITATIONS
37	Flies Sleep on It, or Fuhgeddaboudit!. Cell, 2015, 161, 1498-1500.	13.5	1
38	A Drosophila Circuit Feels the (Sleep) Pressure. Neuron, 2014, 81, 720-722.	3.8	0