Keun Hyung Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9128387/keun-hyung-lee-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 papers 2,338 18 h-index g-index

51 2,659 10.3 5.04 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
44	Facile Achievement of Complementary Resistive Switching in Block Copolymer Micelle-Based Resistive Memories <i>Macromolecular Rapid Communications</i> , 2022 , e2100686	4.8	
43	Self-Healable, Stretchable, and Nonvolatile Solid Polymer Electrolytes for Sustainable Energy Storage and Sensing Applications. <i>Energy Storage Materials</i> , 2021 ,	19.4	4
42	Block Copolymer-Based Supramolecular Ionogels for Accurate On-Skin Motion Monitoring. Advanced Functional Materials, 2021, 31, 2102386	15.6	17
41	Electrochemiluminescent Transistors: A New Strategy toward Light-Emitting Switching Devices. <i>Advanced Materials</i> , 2021 , 33, e2005456	24	6
40	Ultra-Sensitive and Stretchable Ionic Skins for High-Precision Motion Monitoring. <i>Advanced Functional Materials</i> , 2021 , 31, 2010199	15.6	20
39	Electrochemiluminescent Materials: Electrochemiluminescent Transistors: A New Strategy toward Light-Emitting Switching Devices (Adv. Mater. 5/2021). <i>Advanced Materials</i> , 2021 , 33, 2170037	24	
38	Optimizing Electrochemically Active Surfaces of Carbonaceous Electrodes for Ionogel Based Supercapacitors. <i>Advanced Functional Materials</i> , 2020 , 30, 2002053	15.6	17
37	High-Mobility Low-Hysteresis Electrolyte-Gated Transistors with a DPP-Benzotriazole Copolymer Semiconductor. <i>Macromolecular Research</i> , 2020 , 28, 683-687	1.9	7
36	Vacancy engineering of a solution processed Cul semiconductor: tuning the electrical properties of inorganic P-channel thin-film transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9608-9614	7.1	12
35	Thermostable Ion Gels for High-Temperature Operation of Electrolyte-Gated Transistors. <i>ACS Applied Materials & Description of Electrolyte-Gated Transistors and Applied Materials & Description of Electrolyte & Desc</i>	9.5	6
34	Solution processed vertical p-channel thin film transistors using copper(I) thiocyanate. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5587-5593	7.1	7
33	Tough and ionically conductive polymer electrolyte composites based on random copolymers with crystallizable side chain architecture. <i>Organic Electronics</i> , 2020 , 84, 105788	3.5	4
32	Light-Emitting Devices Based on Electrochemiluminescence Gels. <i>Advanced Functional Materials</i> , 2020 , 30, 1907936	15.6	32
31	Meyer-Rod Coated 2D Single-Crystalline Copper Nanoplate Film with Intensive Pulsed Light for Flexible Electrode. <i>Coatings</i> , 2020 , 10, 88	2.9	1
30	Printable carbon nanotube-based elastic conductors for fully-printed sub-1 V stretchable electrolyte-gated transistors and inverters. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 3639-3645	7.1	11
29	Low voltage, high gain electrolyte-gated complementary inverters based on transfer-printed block copolymer ion gels. <i>Organic Electronics</i> , 2019 , 71, 266-271	3.5	10
28	High-conductivity electrolyte gate dielectrics based on poly(styrene-co-methyl methacrylate)/ionic liquid. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6950-6955	7.1	6

(2014-2019)

27	High-Performance P-Type Copper(I) Thiocyanate Thin Film Transistors Processed from Solution at Low Temperature. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900883	4.6	14	
26	Ultrahigh-Mobility and Solution-Processed Inorganic P-Channel Thin-Film Transistors Based on a Transition-Metal Halide Semiconductor. <i>ACS Applied Materials & Description (Control of the Control of the</i>	9.5	18	
25	Highly conductive and mechanically robust nanocomposite polymer electrolytes for solid-state electrochemical thin-film devices. <i>Organic Electronics</i> , 2019 , 65, 426-433	3.5	12	
24	Light emitting fabrics based on luminophore dye-doped ion gel electrolyte microfibers. <i>Dyes and Pigments</i> , 2018 , 154, 188-193	4.6	7	
23	Nonvolatile Electric Double-Layer Transistor Memory Devices Embedded with Au Nanoparticles. <i>ACS Applied Materials & Double Services</i> , 2018 , 10, 9563-9570	9.5	17	
22	Solution-Processed Perovskite Gate Insulator for Sub-2 V Electrolyte-Gated Transistors. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 10552-10558	3.8	4	
21	Electrospun polymer electrolyte nanocomposites for solid-state energy storage. <i>Composites Part B: Engineering</i> , 2018 , 152, 275-281	10	10	
20	Sub-2 V, Transfer-Stamped Organic/Inorganic Complementary Inverters Based on Electrolyte-Gated Transistors. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	27	
19	Highly conductive, binary ionic liquid solvent mixture ion gels for effective switching of electrolyte-gated transistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10987-10993	7.1	19	
18	Physically Cross-Linked Homopolymer Ion Gels for High Performance Electrolyte-Gated Transistors. <i>ACS Applied Materials & District Mate</i>	9.5	52	
17	Area-Controllable Stamping of Semicrystalline Copolymer Ionogels for Solid-State Electrolyte-Gated Transistors and Light-Emitting Devices. <i>ACS Applied Materials & Devices</i> , 2017 , 9, 42978-42985	9.5	14	
16	Solid-State Dual Function Electrochemical Devices: Energy Storage and Light-Emitting Applications. <i>Advanced Energy Materials</i> , 2016 , 6, 1600651	21.8	24	
15	Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters. <i>ACS Applied Materials & District Acrylate For Organic Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate For Organic Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate For Organic Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate For Organic Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate For Organic Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate For Organic Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate For Organic Photo-Patternable Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate For Organic Photo-Patternable Photo-Pa</i>	9.5	37	
14	Self-Supporting Ion Gels for Electrochemiluminescent Sticker-Type Optoelectronic Devices. <i>Scientific Reports</i> , 2016 , 6, 29805	4.9	43	
13	Improved Hierarchical Ordering in Supramolecules via Symmetrically Bifunctionalized Organic Semiconductor. <i>Macromolecules</i> , 2016 , 49, 2639-2645	5.5	11	
12	Supercapacitors: Solid-State Dual Function Electrochemical Devices: Energy Storage and Light-Emitting Applications (Adv. Energy Mater. 19/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	1	
11	Optimization of nanocomposite gate insulators for organic thin film transistors. <i>Organic Electronics</i> , 2015 , 17, 144-150	3.5	12	
10	Dielectric properties of barium titanate supramolecular nanocomposites. <i>Nanoscale</i> , 2014 , 6, 3526-31	7.7	23	

9	Transfer printing of thermoreversible ion gels for flexible electronics. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2013 , 5, 9522-7	9.5	48
8	Electrolyte-gated transistors for organic and printed electronics. <i>Advanced Materials</i> , 2013 , 25, 1822-46	24	658
7	High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9652-5	16.4	157
6	Performance and stability of aerosol-jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). ACS Applied Materials & Interfaces, 2013, 5, 6580-5	9.5	106
5	Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic. <i>Advanced Materials</i> , 2013 , 25, 3413-8	24	124
4	"Cut and stick" rubbery ion gels as high capacitance gate dielectrics. Advanced Materials, 2012, 24, 4457	-62	337
3	Ionic Conductivity, Capacitance, and Viscoelastic Properties of Block Copolymer-Based Ion Gels. <i>Macromolecules</i> , 2011 , 44, 940-949	5.5	163
2	Electrical impedance of spin-coatable ion gel films. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 3315-21	3.4	142
1	Viscoelastic Properties, Ionic Conductivity, and Materials Design Considerations for Poly(styrene-b-ethylene oxide-b-styrene)-Based Ion Gel Electrolytes. <i>Macromolecules</i> , 2011 , 44, 8981-89	9 § 9	92