## Qiyong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9128282/publications.pdf Version: 2024-02-01



Οιγονις Γιμ

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature<br>Microbiology, 2019, 4, 854-863.                                                                          | 5.9  | 699       |
| 2  | Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature, 2019, 572, 56-61.                                                                                                    | 13.7 | 430       |
| 3  | Haze, public health and mitigation measures in China: A review of the current evidence for further policy response. Science of the Total Environment, 2017, 578, 148-157.                              | 3.9  | 230       |
| 4  | Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review. International Journal of Environmental Research and Public Health, 2015, 12, 5256-5283.           | 1.2  | 196       |
| 5  | Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Science of the Total Environment, 2019, 649, 695-702.                                                   | 3.9  | 195       |
| 6  | Climate variation drives dengue dynamics. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, 113-118.                                                      | 3.3  | 159       |
| 7  | Cardiovascular mortality risk attributable to ambient temperature in China. Heart, 2015, 101, 1966-1972.                                                                                               | 1.2  | 155       |
| 8  | The Tsinghua–Lancet Commission on Healthy Cities in China: unlocking the power of cities for a healthy China. Lancet, The, 2018, 391, 2140-2184.                                                       | 6.3  | 155       |
| 9  | A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host and Microbe, 2019, 25, 101-112.e5.                                                                                | 5.1  | 154       |
| 10 | Mosquito C-type lectins maintain gut microbiome homeostasis. Nature Microbiology, 2016, 1, .                                                                                                           | 5.9  | 126       |
| 11 | The burden of stroke mortality attributable to cold and hot ambient temperatures: Epidemiological evidence from China. Environment International, 2016, 92-93, 232-238.                                | 4.8  | 123       |
| 12 | Modification of the effects of air pollutants on mortality by temperature: A systematic review and meta-analysis. Science of the Total Environment, 2017, 575, 1556-1570.                              | 3.9  | 116       |
| 13 | Impact of extreme high temperature on mortality and regional level definition of heat wave: A multi-city study in China. Science of the Total Environment, 2015, 505, 535-544.                         | 3.9  | 113       |
| 14 | The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health,<br>The, 2021, 6, e64-e81.                                                                            | 4.7  | 106       |
| 15 | Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3624-3629. | 3.3  | 105       |
| 16 | Projecting heat-related excess mortality under climate change scenarios in China. Nature<br>Communications, 2021, 12, 1039.                                                                            | 5.8  | 102       |
| 17 | Association between dengue fever incidence and meteorological factors in Guangzhou, China,<br>2005–2014. Environmental Research, 2017, 153, 17-26.                                                     | 3.7  | 100       |
| 18 | Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou,<br>2014. PLoS Neglected Tropical Diseases, 2015, 9, e0003808.                                         | 1.3  | 96        |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Public health co-benefits of greenhouse gas emissions reduction: A systematic review. Science of the<br>Total Environment, 2018, 627, 388-402.                                   | 3.9 | 96        |
| 20 | Heat-related illness in China, summer of 2013. International Journal of Biometeorology, 2016, 60, 131-137.                                                                       | 1.3 | 94        |
| 21 | Biodiverse green spaces: a prescription for global urban health. Frontiers in Ecology and the Environment, 2017, 15, 510-516.                                                    | 1.9 | 86        |
| 22 | Predicting Local Dengue Transmission in Guangzhou, China, through the Influence of Imported Cases,<br>Mosquito Density and Climate Variability. PLoS ONE, 2014, 9, e102755.      | 1.1 | 86        |
| 23 | Dengue is still an imported disease in China: A case study in Guangzhou. Infection, Genetics and Evolution, 2015, 32, 178-190.                                                   | 1.0 | 82        |
| 24 | Fine particulate matter constituents and cause-specific mortality in China: A nationwide modelling study. Environment International, 2020, 143, 105927.                          | 4.8 | 78        |
| 25 | Cold spell and mortality in 31 Chinese capital cities: Definitions, vulnerability and implications.<br>Environment International, 2019, 128, 271-278.                            | 4.8 | 73        |
| 26 | Dengue fever in China. Lancet, The, 2015, 385, 1621-1622.                                                                                                                        | 6.3 | 68        |
| 27 | The burden of lung cancer mortality attributable to fine particles in China. Science of the Total Environment, 2017, 579, 1460-1466.                                             | 3.9 | 67        |
| 28 | The effect of ambient temperature on diabetes mortality in China: A multi-city time series study.<br>Science of the Total Environment, 2016, 543, 75-82.                         | 3.9 | 63        |
| 29 | The changing epidemiological characteristics of severe fever with thrombocytopenia syndrome in<br>China, 2011–2016. Scientific Reports, 2017, 7, 9236.                           | 1.6 | 63        |
| 30 | Vulnerability to the impact of temperature variability on mortality in 31 major Chinese cities.<br>Environmental Pollution, 2018, 239, 631-637.                                  | 3.7 | 62        |
| 31 | Seasonal variations of temperature-related mortality burden from cardiovascular disease and myocardial infarction in China. Environmental Pollution, 2017, 224, 400-406.         | 3.7 | 59        |
| 32 | Infectious Diseases, Urbanization and Climate Change: Challenges in Future China. International<br>Journal of Environmental Research and Public Health, 2015, 12, 11025-11036.   | 1.2 | 58        |
| 33 | The interactive effects between high temperature and air pollution on mortality: A time-series analysis in Hefei, China. Science of the Total Environment, 2017, 575, 1530-1537. | 3.9 | 58        |
| 34 | A Systematic Review and Meta-Analysis of Dengue Risk with Temperature Change. International Journal of Environmental Research and Public Health, 2015, 12, 1-15.                 | 1.2 | 56        |
| 35 | Population Movement, City Closure in Wuhan, and Geographical Expansion of the COVID-19 Infection in China in January 2020. Clinical Infectious Diseases, 2020, 71, 2045-2051.    | 2.9 | 56        |
| 36 | Temperature and mortality on the roof of the world: A time-series analysis in three Tibetan counties,<br>China. Science of the Total Environment, 2014, 485-486, 41-48.          | 3.9 | 52        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method. International<br>Journal of Environmental Research and Public Health, 2020, 17, 453.                                                                                                   | 1.2 | 50        |
| 38 | Epidemiological trends of dengue in mainland China, 2005–2015. International Journal of Infectious<br>Diseases, 2017, 57, 86-91.                                                                                                                                        | 1.5 | 49        |
| 39 | Host serum iron modulates dengue virus acquisition by mosquitoes. Nature Microbiology, 2019, 4, 2405-2415.                                                                                                                                                              | 5.9 | 49        |
| 40 | Dengue Virus Serotype 3 Subtype III, Zhejiang Province, China. Emerging Infectious Diseases, 2011, 17, 321-323.                                                                                                                                                         | 2.0 | 48        |
| 41 | The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland<br>China. Environment International, 2014, 73, 1-9.                                                                                                                  | 4.8 | 47        |
| 42 | Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors<br>using ordinary least squares: A case study in five districts of Guangzhou City, China, 2014.<br>International Journal of Infectious Diseases, 2018, 75, 39-48. | 1.5 | 47        |
| 43 | Landscape of emerging and re-emerging infectious diseases in China: impact of ecology, climate, and behavior. Frontiers of Medicine, 2018, 12, 3-22.                                                                                                                    | 1.5 | 46        |
| 44 | Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications. Environmental Pollution, 2018, 240, 683-698.                                                                        | 3.7 | 46        |
| 45 | Temperature, hospital admissions and emergency room visits in Lhasa, Tibet: A time-series analysis.<br>Science of the Total Environment, 2014, 490, 838-848.                                                                                                            | 3.9 | 44        |
| 46 | The impact of climate variability on infectious disease transmission in China: Current knowledge and further directions. Environmental Research, 2019, 173, 255-261.                                                                                                    | 3.7 | 43        |
| 47 | A climate-driven mechanistic population model of Aedes albopictus with diapause. Parasites and Vectors, 2016, 9, 175.                                                                                                                                                   | 1.0 | 42        |
| 48 | Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments.<br>Nature Communications, 2019, 10, 1324.                                                                                                                            | 5.8 | 41        |
| 49 | The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, The, 2021, 6, e932-e947.                                                                                                           | 4.7 | 41        |
| 50 | Ambient high temperature and mortality in Jinan, China: A study of heat thresholds and vulnerable populations. Environmental Research, 2017, 156, 657-664.                                                                                                              | 3.7 | 40        |
| 51 | Impact of meteorological factors on hemorrhagic fever with renal syndrome in 19 cities in China, 2005–2014. Science of the Total Environment, 2018, 636, 1249-1256.                                                                                                     | 3.9 | 40        |
| 52 | Diurnal temperature range in relation to death from stroke in China. Environmental Research, 2018,<br>164, 669-675.                                                                                                                                                     | 3.7 | 38        |
| 53 | Temperature, temperature extremes, and cause-specific respiratory mortality in China: a multi-city time series analysis. Air Quality, Atmosphere and Health, 2019, 12, 539-548.                                                                                         | 1.5 | 37        |
| 54 | Climate factors and the East Asian summer monsoon may drive large outbreaks of dengue in China.<br>Environmental Research, 2020, 183, 109190.                                                                                                                           | 3.7 | 36        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1<br>viruses in China. Scientific Reports, 2015, 5, 18094.                                                                                           | 1.6 | 33        |
| 56 | Global COVID-19 pandemic demands joint interventions for the suppression of future waves.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26151-26157.                                                | 3.3 | 33        |
| 57 | Factors associated with Severe Fever with Thrombocytopenia Syndrome infection and fatal outcome.<br>Scientific Reports, 2016, 6, 33175.                                                                                                              | 1.6 | 32        |
| 58 | Short-term effect of apparent temperature on daily emergency visits for mental and behavioral<br>disorders in Beijing, China: A time-series study. Science of the Total Environment, 2020, 733, 139040.                                              | 3.9 | 32        |
| 59 | Larvicidal activity of the essential oil from <i>Tetradium glabrifolium</i> fruits and its constituents against <i>Aedes albopictus</i> . Pest Management Science, 2015, 71, 1582-1586.                                                              | 1.7 | 31        |
| 60 | Perceptions of capacity for infectious disease control and prevention to meet the challenges of<br>dengue fever in the face of climate change: A survey among CDC staff in Guangdong Province, China.<br>Environmental Research, 2016, 148, 295-302. | 3.7 | 31        |
| 61 | DETECTION OF BARTONELLA SPECIES IN SMALL MAMMALS FROM ZHEJIANG PROVINCE, CHINA. Journal of Wildlife Diseases, 2010, 46, 179-185.                                                                                                                     | 0.3 | 30        |
| 62 | Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasites and Vectors, 2020, 13, 28.                                                                                         | 1.0 | 30        |
| 63 | Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China.<br>Environmental Research, 2016, 150, 299-305.                                                                                                                 | 3.7 | 29        |
| 64 | Association between floods and infectious diarrhea and their effect modifiers in Hunan province,<br>China: A two-stage model. Science of the Total Environment, 2018, 626, 630-637.                                                                  | 3.9 | 29        |
| 65 | Bioactivities of a New Pyrrolidine Alkaloid from the Root Barks of Orixa japonica. Molecules, 2016, 21, 1665.                                                                                                                                        | 1.7 | 28        |
| 66 | Spatio-temporal patterns of scrub typhus in mainland China, 2006-2017. PLoS Neglected Tropical Diseases, 2019, 13, e0007916.                                                                                                                         | 1.3 | 28        |
| 67 | A Cross-Sectional Study of Heat Wave-Related Knowledge, Attitude, and Practice among the Public in<br>the Licheng District of Jinan City, China. International Journal of Environmental Research and Public<br>Health, 2016, 13, 648.                | 1.2 | 27        |
| 68 | Who Is Vulnerable to Dengue Fever? A Community Survey of the 2014 Outbreak in Guangzhou, China.<br>International Journal of Environmental Research and Public Health, 2016, 13, 712.                                                                 | 1.2 | 27        |
| 69 | County-level heat vulnerability of urban and rural residents in Tibet, China. Environmental Health, 2016, 15, 3.                                                                                                                                     | 1.7 | 25        |
| 70 | Historical and genomic data reveal the influencing factors on global transmission velocity of plague<br>during the Third Pandemic. Proceedings of the National Academy of Sciences of the United States of<br>America, 2019, 116, 11833-11838.       | 3.3 | 25        |
| 71 | The association between meteorological factors and road traffic injuries: a case analysis from Shantou city, China. Scientific Reports, 2016, 6, 37300.                                                                                              | 1.6 | 24        |
| 72 | Epidemiological dynamics of dengue fever in mainland China, 2014–2018. International Journal of<br>Infectious Diseases, 2019, 86, 82-93.                                                                                                             | 1.5 | 24        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Spatiotemporal patterns and determinants of dengue at county level in China from 2005–2017.<br>International Journal of Infectious Diseases, 2018, 77, 96-104.                                                                  | 1.5 | 23        |
| 74 | Molecular phylogeny and the underestimated species diversity of the endemic whiteâ€bellied rat<br>(Rodentia: Muridae: <i>Niviventer</i> ) in Southeast Asia and China. Zoologica Scripta, 2015, 44, 475-494.                    | 0.7 | 22        |
| 75 | Evaluation of Contact Toxicity and Repellency of the Essential Oil of Pogostemon cablin Leaves and Its<br>Constituents Against Blattella germanica (Blattodae: Blattelidae). Journal of Medical Entomology,<br>2015, 52, 86-92. | 0.9 | 22        |
| 76 | Spatial and Temporal Patterns of Dengue in Guangdong Province of China. Asia-Pacific Journal of<br>Public Health, 2015, 27, NP844-NP853.                                                                                        | 0.4 | 22        |
| 77 | The Epidemiological Characteristics and Dynamic Transmission of Dengue in China, 2013. PLoS<br>Neglected Tropical Diseases, 2016, 10, e0005095.                                                                                 | 1.3 | 22        |
| 78 | Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control. Journal of Mathematical Biology, 2020, 81, 243-276.                                                                       | 0.8 | 22        |
| 79 | Regional Impact of Climate on Japanese Encephalitis in Areas Located near the Three Gorges Dam. PLoS<br>ONE, 2014, 9, e84326.                                                                                                   | 1.1 | 21        |
| 80 | A Systematic Review of the Development and Validation of the Heat Vulnerability Index: Major Factors,<br>Methods, and Spatial Units. Current Climate Change Reports, 2021, 7, 87-97.                                            | 2.8 | 21        |
| 81 | The Short-Term Effects of Visibility and Haze on Mortality in a Coastal City of China: A Time-Series<br>Study. International Journal of Environmental Research and Public Health, 2017, 14, 1419.                               | 1.2 | 20        |
| 82 | Seroprevalence of dengue IgG antibodies in symptomatic and asymptomatic individuals three years after an outbreak in Zhejiang Province, China. BMC Infectious Diseases, 2018, 18, 92.                                           | 1.3 | 20        |
| 83 | Ambient PM <sub>2.5</sub> exposure and hospital cost and length of hospital stay for respiratory diseases in 11 cities in Shanxi Province, China. Thorax, 2021, 76, 815-820.                                                    | 2.7 | 20        |
| 84 | Ambient air pollution and low temperature associated with case fatality of COVID-19: A nationwide retrospective cohort study in China. Innovation(China), 2021, 2, 100139.                                                      | 5.2 | 20        |
| 85 | Hourly temperature variability and mortality in 31 major Chinese cities: Effect modification by<br>individual characteristics, season and temperature zone. Environment International, 2021, 156, 106746.                       | 4.8 | 20        |
| 86 | Modeling the Heterogeneity of Dengue Transmission in a City. International Journal of Environmental<br>Research and Public Health, 2018, 15, 1128.                                                                              | 1.2 | 18        |
| 87 | The driver of dengue fever incidence in two high-risk areas of China: A comparative study. Scientific<br>Reports, 2019, 9, 19510.                                                                                               | 1.6 | 18        |
| 88 | Perceptions of Heat Risk to Health: A Qualitative Study of Professional Bus Drivers and Their<br>Managers in Jinan, China. International Journal of Environmental Research and Public Health, 2014, 11,<br>1520-1535.           | 1.2 | 17        |
| 89 | Effects of Climate and Rodent Factors on Hemorrhagic Fever with Renal Syndrome in Chongqing,<br>China, 1997–2008. PLoS ONE, 2015, 10, e0133218.                                                                                 | 1.1 | 17        |
| 90 | Interactions and marginal effects of meteorological factors on haemorrhagic fever with renal syndrome in different climate zones: Evidence from 254 cities of China. Science of the Total Environment, 2020, 721, 137564.       | 3.9 | 17        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of meteorological factors on the activity of influenza in Chongqing, China, 2012–2019. PLoS<br>ONE, 2021, 16, e0246023.                                                                                                                  | 1.1 | 17        |
| 92  | Niche modeling predictions of the potential distribution of Marmota himalayana, the host animal of plague in Yushu County of Qinghai. BMC Public Health, 2016, 16, 183.                                                                         | 1.2 | 16        |
| 93  | The evolutionary dynamics of DENV 4 genotype I over a 60-year period. PLoS Neglected Tropical Diseases, 2019, 13, e0007592.                                                                                                                     | 1.3 | 16        |
| 94  | Dispersal route of the Asian house rat (Rattus tanezumi) on mainland China: insights from microsatellite and mitochondrial DNA. BMC Genetics, 2019, 20, 11.                                                                                     | 2.7 | 16        |
| 95  | Population health impacts of China's climate change policies. Environmental Research, 2019, 175, 178-185.                                                                                                                                       | 3.7 | 16        |
| 96  | Dengue Fever in Mainland China, 2005–2020: A Descriptive Analysis of Dengue Cases and Aedes Data.<br>International Journal of Environmental Research and Public Health, 2022, 19, 3910.                                                         | 1.2 | 16        |
| 97  | Spatiotemporal patterns of severe fever with thrombocytopenia syndrome in China, 2011–2016. Ticks<br>and Tick-borne Diseases, 2018, 9, 927-933.                                                                                                 | 1.1 | 15        |
| 98  | Diabetes mortality burden attributable to short-term effect of PM10 in China. Environmental Science and Pollution Research, 2020, 27, 18784-18792.                                                                                              | 2.7 | 15        |
| 99  | Spatial Dynamics of Dengue Fever in Mainland China, 2019. International Journal of Environmental<br>Research and Public Health, 2021, 18, 2855.                                                                                                 | 1.2 | 15        |
| 100 | Mosquito Diversity and Population Genetic Structure of Six Mosquito Species From Hainan Island.<br>Frontiers in Genetics, 2020, 11, 602863.                                                                                                     | 1.1 | 14        |
| 101 | Association between meteorological factors and the prevalence dynamics of Japanese encephalitis.<br>PLoS ONE, 2021, 16, e0247980.                                                                                                               | 1.1 | 14        |
| 102 | Assessing the suitability for Aedes albopictus and dengue transmission risk in China with a delay differential equation model. PLoS Neglected Tropical Diseases, 2021, 15, e0009153.                                                            | 1.3 | 14        |
| 103 | Identification of Larvicidal Constituents of the Essential Oil of Echinops grijsii Roots against the<br>Three Species of Mosquitoes. Molecules, 2017, 22, 205.                                                                                  | 1.7 | 13        |
| 104 | Models to assess the effects of non-identical sex ratio augmentations of Wolbachia -carrying mosquitoes on the control of dengue disease. Mathematical Biosciences, 2018, 299, 58-72.                                                           | 0.9 | 13        |
| 105 | Laboratory Evaluation of Larvicidal Activity of the Essential oil of Allium tuberosum Roots and its<br>Selected Major Constituent Compounds Against Aedes albopictus (Diptera: Culicidae). Journal of<br>Medical Entomology, 2015, 52, 437-441. | 0.9 | 12        |
| 106 | Projections of hepatitis A virus infection associated with flood events by 2020 and 2030 in Anhui<br>Province, China. International Journal of Biometeorology, 2016, 60, 1873-1884.                                                             | 1.3 | 12        |
| 107 | Human plague system associated with rodent diversity and other environmental factors. Royal<br>Society Open Science, 2019, 6, 190216.                                                                                                           | 1.1 | 12        |
| 108 | Association between Severe Fever with Thrombocytopenia Syndrome Incidence and Ambient<br>Temperature. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1478-1483.                                                                   | 0.6 | 12        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Predicting the Potential Global Distribution of Amblyomma americanum (Acari: Ixodidae) under Near<br>Current and Future Climatic Conditions, Using the Maximum Entropy Model. Biology, 2021, 10, 1057.                        | 1.3 | 12        |
| 110 | Inapparent Infection During an Outbreak of Dengue Fever in Southeastern China. Viral Immunology,<br>2012, 25, 456-460.                                                                                                        | 0.6 | 11        |
| 111 | A time-trend ecological study for identifying flood-sensitive infectious diseases in Guangxi, China<br>from 2005 to 2012. Environmental Research, 2019, 176, 108577.                                                          | 3.7 | 11        |
| 112 | Breeding Site Characteristics and Associated Factors of Culex pipiens Complex in Lhasa, Tibet, P. R.<br>China. International Journal of Environmental Research and Public Health, 2019, 16, 1407.                             | 1.2 | 11        |
| 113 | Identifying different types of flood–sensitive diarrheal diseases from 2006 to 2010 in Guangxi, China.<br>Environmental Research, 2019, 170, 359-365.                                                                         | 3.7 | 11        |
| 114 | The expanding pattern of Aedes aegypti in southern Yunnan, China: insights from microsatellite and mitochondrial DNA markers. Parasites and Vectors, 2019, 12, 561.                                                           | 1.0 | 10        |
| 115 | Spatiotemporal Dynamics of Scrub Typhus in Jiangxi Province, China, from 2006 to 2018. International<br>Journal of Environmental Research and Public Health, 2021, 18, 4599.                                                  | 1.2 | 9         |
| 116 | Community Knowledge and Experience of Mosquitoes and Personal Prevention and Control Practices in Lhasa, Tibet. International Journal of Environmental Research and Public Health, 2014, 11, 9919-9937.                       | 1.2 | 8         |
| 117 | Perceptions of malaria control and prevention in an era of climate change: a cross-sectional survey among CDC staff in China. Malaria Journal, 2017, 16, 136.                                                                 | 0.8 | 8         |
| 118 | Effective analysis of a community-based intervention during heat waves to improve knowledge,<br>attitude and practice in a population in Licheng District, Jinan City, China. Journal of Public Health,<br>2018, 40, 573-581. | 1.0 | 8         |
| 119 | Exploring Epidemiological Characteristics of Domestic Imported Dengue Fever in Mainland China, 2014–2018. International Journal of Environmental Research and Public Health, 2019, 16, 3901.                                  | 1.2 | 8         |
| 120 | Epidemiological characteristics and spatiotemporal patterns of typhus group rickettsiosis at the county level in China, 2005–2017. International Journal of Infectious Diseases, 2020, 91, 60-67.                             | 1.5 | 8         |
| 121 | Spatiotemporal dynamics of hemorrhagic fever with renal syndrome in Jiangxi province, China.<br>Scientific Reports, 2020, 10, 14291.                                                                                          | 1.6 | 8         |
| 122 | Comparative analyses on epidemiological characteristics of dengue fever in Guangdong and Yunnan,<br>China, 2004–2018. BMC Public Health, 2021, 21, 1389.                                                                      | 1.2 | 8         |
| 123 | Land use and land cover change and its impacts on dengue dynamics in China: A systematic review. PLoS<br>Neglected Tropical Diseases, 2021, 15, e0009879.                                                                     | 1.3 | 8         |
| 124 | Predicting Current Potential Distribution and the Range Dynamics of Pomacea canaliculata in China under Global Climate Change. Biology, 2022, 11, 110.                                                                        | 1.3 | 8         |
| 125 | Ambient sulfur dioxide and hospital expenditures and length of hospital stay for respiratory diseases:<br>A multicity study in China. Ecotoxicology and Environmental Safety, 2022, 229, 113082.                              | 2.9 | 8         |
| 126 | The epidemiological characteristics of dengue in high-risk areas of China, 2013–2016. PLoS Neglected Tropical Diseases, 2021, 15, e0009970.                                                                                   | 1.3 | 8         |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | China's capacity of hospitals to deal with infectious diseases in the context of climate change. Social Science and Medicine, 2018, 206, 60-66.                                                                                      | 1.8 | 7         |
| 128 | The effects of temperature on human mortality in a Chinese city: burden of disease calculation,<br>attributable risk exploration, and vulnerability identification. International Journal of<br>Biometeorology, 2019, 63, 1319-1329. | 1.3 | 7         |
| 129 | Projecting the Potential Distribution of Glossina morsitans (Diptera: Glossinidae) under Climate<br>Change Using the MaxEnt Model. Biology, 2021, 10, 1150.                                                                          | 1.3 | 7         |
| 130 | Projecting the Potential Distribution Areas of Ixodes scapularis (Acari: Ixodidae) Driven by Climate<br>Change. Biology, 2022, 11, 107.                                                                                              | 1.3 | 7         |
| 131 | Plague cycles in two rodent species from China: dry years might provide context for epizootics in wet years. Ecosphere, 2016, 7, e01495.                                                                                             | 1.0 | 6         |
| 132 | Molecular identification of Bartonella bacilliformis in ticks collected from two species of wild mammals in Madre de Dios: Peru. BMC Research Notes, 2018, 11, 405.                                                                  | 0.6 | 6         |
| 133 | Effect of absolute humidity on influenza activity across different climate regions in China.<br>Environmental Science and Pollution Research, 2022, 29, 49373-49384.                                                                 | 2.7 | 6         |
| 134 | Economic burden of dengue fever in China: A retrospective research study. PLoS Neglected Tropical<br>Diseases, 2022, 16, e0010360.                                                                                                   | 1.3 | 6         |
| 135 | Perceptions of Health Co-Benefits in Relation to Greenhouse Gas Emission Reductions: A Survey among<br>Urban Residents in Three Chinese Cities. International Journal of Environmental Research and Public<br>Health, 2017, 14, 298. | 1.2 | 5         |
| 136 | Dengue control in the context of climate change: Views from health professionals in different geographic regions of China. Journal of Infection and Public Health, 2019, 12, 388-394.                                                | 1.9 | 5         |
| 137 | Public health professionals' perceptions of the capacity of China's CDCs to address emerging and re-emerging infectious diseases. Journal of Public Health, 2021, 43, 209-216.                                                       | 1.0 | 5         |
| 138 | Evidence-informed urban health and sustainability governance in two Chinese cities. Buildings and Cities, 2021, 2, 550.                                                                                                              | 1.1 | 5         |
| 139 | Determination of Factors Affecting Dengue Occurrence in Representative Areas of China: A Principal<br>Component Regression Analysis. Frontiers in Public Health, 2020, 8, 603872.                                                    | 1.3 | 5         |
| 140 | Mosquito population dynamics during the construction of Three Gorges Dam in Yangtze River, China.<br>Acta Tropica, 2018, 182, 251-256.                                                                                               | 0.9 | 4         |
| 141 | Risk Assessment of Anopheles philippinensis and Anopheles nivipes (Diptera: Culicidae) Invading China<br>under Climate Change. Biology, 2021, 10, 998.                                                                               | 1.3 | 4         |
| 142 | Co-infection with Bartonella bacilliformis and Mycobacterium spp. in a coastal region of Peru. BMC<br>Research Notes, 2017, 10, 656.                                                                                                 | 0.6 | 3         |
| 143 | Climate factors driven typhus group rickettsiosis incidence dynamics in Xishuangbanna Dai<br>autonomous prefecture of Yunnan province in China, 2005–2017. Environmental Health, 2020, 19, 3.                                        | 1.7 | 3         |
| 144 | <i>Aedes</i> Surveillance and Risk Warnings for Dengue — China, 2016⠒2019. China CDC<br>Weekly, 2020, 2, 431-437.                                                                                                                    | 1.0 | 3         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Rapid, Sensitive Detection of Bartonella quintana by Loop-Mediated Isothermal Amplification of the groEL Gene. International Journal of Molecular Sciences, 2016, 17, 1902.            | 1.8 | 2         |
| 146 | A New Record of <i>Ornithoica aequisenta</i> and an Updated Checklist of Hippoboscidae,<br>Nycteribiidae, and Streblidae in China. Journal of Medical Entomology, 2022, 59, 1071-1075. | 0.9 | 2         |
| 147 | Identifying the spatiotemporal clusters of plague occurrences in China during the Third Pandemic.<br>Integrative Zoology, 2020, 15, 69-78.                                             | 1.3 | 1         |
| 148 | Sustainable Pest Management for Health and Well-Being. China CDC Weekly, 2020, 2, 438-442.                                                                                             | 1.0 | 1         |
| 149 | Reported Vector-Borne Diseases - China, 2018. China CDC Weekly, 2020, 2, 219-224.                                                                                                      | 1.0 | 1         |
| 150 | A cluster of Zika virus infection in a Chinese tour group returning from Fiji and Samoa. Scientific<br>Reports, 2017, 7, .                                                             | 1.6 | 0         |
| 151 | Entomological and Molecular Surveillance of Anopheles Mosquitoes in Freetown, Sierra Leone, 2019.<br>Frontiers in Public Health, 2021, 9, 649672.                                      | 1.3 | 0         |