Vanira Trifiletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9128087/publications.pdf Version: 2024-02-01

VANIDA Τριείι εττι

#	Article	IF	CITATIONS
1	Dyeâ€Sensitized Solar Cells that use an Aqueous Choline Chlorideâ€Based Deep Eutectic Solvent as Effective Electrolyte Solution. Energy Technology, 2017, 5, 345-353.	1.8	80
2	New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides. Frontiers in Chemistry, 2019, 7, 297.	1.8	77
3	Tetraaryl Zn ^{II} Porphyrinates Substituted at βâ€Pyrrolic Positions as Sensitizers in Dye‣ensitized Solar Cells: A Comparison with <i>meso</i> â€Disubstituted Push–Pull Zn ^{II} Porphyrinates. Chemistry - A European Journal, 2013, 19, 10723-10740.	1.7	60
4	NiO/MAPbI _{3-x} Cl _{<i>x</i>} /PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4283-4289.	4.0	59
5	Simple novel cyclometallated iridium complexes for potential application in dye-sensitized solar cells. Inorganica Chimica Acta, 2012, 388, 163-167.	1.2	49
6	Thiocyanate-free cyclometalated ruthenium sensitizers for solar cells based on heteroaromatic-substituted 2-arylpyridines. Dalton Transactions, 2012, 41, 11731.	1.6	39
7	A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar cells: Beneficial effects of substitution on the cyclometallated ligand. Journal of Organometallic Chemistry, 2012, 714, 88-93.	0.8	38
8	Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27966-27973.	4.0	38
9	Asymmetric Tribranched Dyes: An Intramolecular Cosensitization Approach for Dye ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 6793-6801.	1.2	36
10	Influence of Porphyrinic Structure on Electron Transfer Processes at the Electrolyte/Dye/TiO ₂ Interface in PSSCs: a Comparison between meso Push–Pull and β-Pyrrolic Architectures. ACS Applied Materials & Interfaces, 2014, 6, 15841-15852.	4.0	32
11	Implications of TiO ₂ surface functionalization on polycrystalline mixed halide perovskite films and photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 20811-20818.	5.2	31
12	Highly improved performance of ZnII tetraarylporphyrinates in DSSCs by the presence of octyloxy chains in the aryl rings. Journal of Materials Chemistry A, 2015, 3, 2954-2959.	5.2	31
13	Influence of alkoxy chain envelopes on the interfacial photoinduced processes in tetraarylporphyrin-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 9577-9585.	1.3	29
14	Physicochemical Investigation of the Panchromatic Effect on β-Substituted Zn ^{II} Porphyrinates for DSSCs: The Role of the π Bridge between a Dithienylethylene Unit and the Porphyrinic Ring. Journal of Physical Chemistry C, 2014, 118, 7307-7320.	1.5	27
15	Ruthenium oxyquinolate complexes for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 405, 98-104.	1.2	24
16	Engineering TiO ₂ /Perovskite Planar Heterojunction for Hysteresis‣ess Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600493.	1.9	24
17	All-Oxide p–n Junction Thermoelectric Generator Based on SnO <i>_x</i> and ZnO Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 35187-35196.	4.0	21
18	Dye-sensitized solar cells containing plasma jet deposited hierarchically nanostructured TiO2 thin photoanodes. Journal of Materials Chemistry A, 2013, 1, 11665.	5.2	16

VANIRA TRIFILETTI

#	Article	IF	CITATIONS
19	Thermoelectric properties of CZTS thin films: effect of Cu–Zn disorder. Physical Chemistry Chemical Physics, 2021, 23, 13148-13158.	1.3	15
20	Kesterite solar-cells by drop-casting of inorganic sol–gel inks. Solar Energy, 2020, 208, 532-538.	2.9	13
21	Photoluminescence study of deep donor- deep acceptor pairs in Cu2ZnSnS4. Materials Science in Semiconductor Processing, 2018, 80, 52-55.	1.9	12
22	Performance enhancement of a dye-sensitized solar cell by peripheral aromatic and heteroaromatic functionalization in di-branched organic sensitizers. New Journal of Chemistry, 2018, 42, 9281-9290.	1.4	11
23	Facile and Low-Cost Fabrication of Cu/Zn/Sn-Based Ternary and Quaternary Chalcogenides Thermoelectric Generators. ACS Applied Energy Materials, 2022, 5, 5909-5918.	2.5	11
24	Growth and Characterization of Cu2Zn1â^'xFexSnS4 Thin Films for Photovoltaic Applications. Materials, 2020, 13, 1471.	1.3	10
25	Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals, 2020, 10, 14.	1.0	9
26	Copper electrodeposition onto zinc for the synthesis of kesterite Cu2ZnSnS4 from a Mo/Zn/Cu/Sn precursor stack. Electrochemistry Communications, 2019, 109, 106580.	2.3	7
27	Sequential deposition of hybrid halide perovskite starting both from lead iodide and lead chloride on the most widely employed substrates. Thin Solid Films, 2018, 657, 110-117.	0.8	5
28	Dye–catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers. RSC Advances, 2021, 11, 5311-5319.	1.7	4
29	Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunity. Frontiers in Electronics, 0, 2, .	2.0	4
30	Band-Gap Tuning Induced by Germanium Introduction in Solution-Processed Kesterite Thin Films. ACS Omega, 2022, 7, 23445-23456.	1.6	4
31	Study of Precursorâ€Inks Designed for Highâ€Quality Cu ₂ ZnSnS ₄ Films for Low ost PV Application. ChemistrySelect, 2019, 4, 4905-4912.	0.7	3
32	Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films. Materials, 2021, 14, 7827.	1.3	3
33	Photovoltaic characterization of di-branched organic sensitizers for DSSCs. Data in Brief, 2019, 25, 104167.	0.5	1