Galina Y Simenyuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9127960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly porous carbon materials filled with gold and manganese oxide nanoparticles for electrochemical use. Catalysis Today, 2015, 249, 220-227.	4.4	11
2	Ultrasonic Assisted Fabrication of Nanocomposite Electrode Materials Au/C for Low-Voltage Electronics. Materials and Manufacturing Processes, 2016, 31, 739-744.	4.7	9
3	Effect of the nature of a reducing agent on properties of ultradisperse copper powders. Russian Journal of Applied Chemistry, 2006, 79, 1605-1608.	0.5	7
4	Effect of various factors on the dispersity of copper nanopowders produced by reduction of copper salts with glycerol. Russian Journal of Applied Chemistry, 2009, 82, 981-985.	0.5	6
5	Bimetallic catalysts for the hydrogenation of aromatic nitro compounds. Solid Fuel Chemistry, 2012, 46, 364-367.	0.7	6
6	EFFECT OF STRUCTURE AND SURFACE STATE OF NITROGEN DOPED CARBON NANOTUBES ON THEIR FUNCTIONAL AND CATALYTIC PROPERTIES. Journal of Structural Chemistry, 2021, 62, 771-781.	1.0	4
7	Multiwalled Carbon Nanotubes: Matrix Nanostructured Composites as Electrode Materials for Supercapacitors. Energy Technology, 2021, 9, 2100449.	3.8	3
8	Preparation of nanosized copper powders with controlled dispersity. Russian Journal of Applied Chemistry, 2011, 84, 912-915.	0.5	2
9	Morphology and Electrochemical Properties of Nanostructured Composite Co2/MWCNT Based on Carbon Nanotubes. Chemistry for Sustainable Development, 2019, , .	0.1	2
10	Development of a Technique and Investigation of Capacitance Characteristics of Electrode Materials for Supercapacitors Based on Nitrogen-Doped Carbon Nanotubes. Eurasian Chemico-Technological Journal, 2017, 19, 201.	0.6	2
11	Preparation of ultradisperse copper powders by reduction of copper salts with L-ascorbic acid and electrically conducting formulations based on these powders. Russian Journal of Applied Chemistry, 2006, 79, 707-710.	0.5	1
12	Nanostructured composites based on highly porous carbon matrices filled with gold. Nanotechnologies in Russia, 2015, 10, 388-399.	0.7	1
13	Morphology and Electrical Capacitance Characteristics of Nanostructured MnxOy/MWCNT Composites. Inorganic Materials, 2021, 57, 487-497.	0.8	1
14	Synthesis of a Carbon/NiCo2O4 Electrode Material for a Supercapacitor by Thermal Decomposition of Mixed Cobalt–Nickel Hydroxides. Chemistry for Sustainable Development, 2018, , .	0.1	1
15	Electrode Material for Supercapacitors Based on Carbon/Nickel Cobaltate Nanocomposite Synthesized by the Thermal Decomposition of Cobalt and Nickel Azides. Chemistry for Sustainable Development, 2019, , .	0.1	1
16	Influence of the Conditions for Obtaining Nanocomposite Electrode Materials Mny/MWCNT on their electrocapacity characteristics. Chemistry for Sustainable Development, 2019, , .	0.1	1
17	Title is missing!. Russian Journal of Applied Chemistry, 2002, 75, 1736-1739.	0.5	0
18	Electrically Conducting Formulations Based on Ultradispersed Powders of Copper, Obtained by Reduction of Its Salts with the Hypophosphite Ion. Russian Journal of Applied Chemistry, 2004, 77, 380-384.	0.5	0

GALINA Y SIMENYUK

#	Article	IF	CITATIONS
19	Effect of stabilizers on the tolerance of copper nanopowders for oxidation by molecular oxygen. Russian Journal of Applied Chemistry, 2010, 83, 345-348.	0.5	0
20	Electrochemical Properties of Coke-Derived Graphene Oxide Reduced by Ascorbic Acid. Coke and Chemistry, 2019, 62, 353-358.	0.4	0
21	New Method for Preparation of Nanostructured Composites Based on Porous Carbon Materials to Use as Supercapacitor Electrodes. Chemistry for Sustainable Development, 2017, , .	0.1	0
22	Mesoporous Carbon Matrix-Based MnxOy/C Hybrid Electrode Materials for Asymmetric Supercapitors. Chemistry for Sustainable Development, 2017, , .	0.1	0
23	Nanostructured composites "porous carbon matrices - products of thermolysis Co(N3)2". Chemistry for Sustainable Development, 2017, , .	0.1	0
24	Hybrid Electrode Materials for Supercapacitors Based on Nanostructured Carbon Matrix Composites Filled with Chromium Oxides and Hydroxides. Chemistry for Sustainable Development, 2018, , .	0.1	0
25	Nanostructured Composites Based on Highly Porous Carbon Matrixes Filled with Cobalt and Nickel Hydroxides. Chemistry for Sustainable Development, 2018, , .	0.1	0
26	Nanostructured Composites MWCNT/transition metal oxide obtained by thermal decomposition of hydroxides. Chemistry for Sustainable Development, 2020, , .	0.1	0
27	Investigation of the Structural Features and Capacitive Parameters of Carbon Materials Based on Carbonized Rice Husk. Chemistry for Sustainable Development, 2020, , .	0.1	0
28	Morphology and Electrical Capacity Properties of Nanostructured Composites PtM/Multi-Walled Carbon Nanotubes (M = Fe, Co). Chemistry for Sustainable Development, 2020, , .	0.1	0
29	ÐÐÐЎСТÐУÐÐ\$ТУÐÐ~ÐÐŽÐ'ÐÐÐЫЕ КОМПОЗÐ~ТЫ AU/ МУÐТ Ð~ PTМЕ/МУÐТ	(ĐœĐ∙=FE	: ĐõCO) Đ"Ə

30 Đ'ЛÐ ĐÐ ĐĐ Đ.Đ Đ£Đ;ЛЎĐ'Đ ™ Đ;Đ ĐĐ¢Đ•Đ—Đ•ĐĐ•ĐЛЕĐŠĐ¢ĐĐŽĐ¥Đ ĐœĐ Đ§Đ•Đ;ĐŠĐ Đ•Đ;ĐŠĐ ™Đ;Đ¢Đ'Đ•ĐĐĐĐŽĐŠĐ ŽĐ ŠĐŽĐœĐ

31	STUDYING THE INFLUENCE OF HEALTH-IMPROVING TRAINING WITH DIFFERENT INTENSITY ON THE PSYCHOPHYSICAL STATE OF MIDDLE-AGED WOMEN OF 35–45 YEARS OLD. Siberian Journal of Life Sciences and Agriculture, 2021, 13, 245-265.	0.3	0	
----	---	-----	---	--