Dagmar Haase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9127694/publications.pdf

Version: 2024-02-01

221 papers 20,006 citations

73 h-index 132 g-index

232 all docs

232 docs citations

times ranked

232

15275 citing authors

#	Article	lF	CITATIONS
1	Comparing the implicit valuation of ecosystem services from nature-based solutions in performance-based green area indicators across three European cities. Landscape and Urban Planning, 2022, 219, 104310.	3.4	20
2	Geospatial assessment of urban ecosystem disservices: An example of poisonous urban trees in Berlin, Germany. Urban Forestry and Urban Greening, 2022, 67, 127440.	2.3	4
3	Identifying Spatial Patterns and Ecosystem Service Delivery of Nature-Based Solutions. Environmental Management, 2022, 69, 735-751.	1.2	10
4	Mapping Impervious Surface Using Phenology-Integrated and Fisher Transformed Linear Spectral Mixture Analysis. Remote Sensing, 2022, 14, 1673.	1.8	4
5	Urban green space interaction and wellbeing – investigating the experience of international students in Berlin during the first COVID-19 lockdown. Urban Forestry and Urban Greening, 2022, 70, 127543.	2.3	30
6	Urban Cemeteriesâ€"Places of Multiple Diversity and Challenges. A Case Study from Åódź (Poland) and Leipzig (Germany). Land, 2022, 11, 677.	1.2	6
7	Integrated Land Use and Urban Function Impacts on Land Surface Temperature: Implications on Urban Heat Mitigation in Berlin with Eight-Type Spaces. Sustainable Cities and Society, 2022, 83, 103944.	5.1	13
8	Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. Trees, Forests and People, 2022, 8, 100252.	0.8	13
9	The Effects of Greening Cities on Climate Change Mitigation and Adaptation. , 2022, , 2055-2073.		2
10	Can improving the spatial equity of urban green space mitigate the effect of urban heat islands? An empirical study. Science of the Total Environment, 2022, 841, 156687.	3.9	46
11	Higher immigration and lower land take rates are driving a new densification wave in European cities. Npj Urban Sustainability, 2022, 2, .	3.7	2
12	Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Science of the Total Environment, 2021, 755, 142661.	3.9	83
13	Discovering the environmental potential of multi-family residential areas for nature-based solutions. A Central European cities perspective. Landscape and Urban Planning, 2021, 206, 103975.	3.4	16
14	Lurking in the bushes: informality, illicit activity and transitional green space in Berlin and Detroit. Cultural Geographies, 2021, 28, 319-339.	1.2	3
15	A conceptual model of the social–ecological system of nature-based solutions in urban environments. Ambio, 2021, 50, 335-345.	2.8	30
16	The Effects of Greening Cities on Climate Change Mitigation and Adaptation. , 2021, , 1-19.		1
17	What Do Urban Ecosystems Do for the People in the City?. , 2021, , 165-208.		О
18	How Vulnerable Are Urban Ecosystems and How Can Urban Resilience Be Developed with Them?., 2021,, 209-262.		0

#	Article	IF	Citations
19	What is Urban Ecology and What Are Its Applications in Urban Development?., 2021,, 313-323.		О
20	On the Spatial Patterns of Urban Thermal Conditions Using Indoor and Outdoor Temperatures. Remote Sensing, $2021,13,640.$	1.8	3
21	What are the traits of a social-ecological system: towards a framework in support of urban sustainability. Npj Urban Sustainability, 2021, 1 , .	3.7	22
22	Continuous integration in urban social-ecological systems science needs to allow for spacing co-existence. Ambio, 2021, 50, 1644-1649.	2.8	8
23	Urban change as an untapped opportunity for climate adaptation. Npj Urban Sustainability, 2021, 1, .	3.7	49
24	How about water? Urban blue infrastructure management in Romania. Cities, 2021, 110, 103084.	2.7	25
25	Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in Shanghai, China. Frontiers in Environmental Science, 2021, 9, .	1.5	34
26	Ageing and population shrinking: implications for sustainability in the urban century. Npj Urban Sustainability, $2021,1,.$	3.7	55
27	Impact of summer heat on urban park visitation, perceived health and ecosystem service appreciation. Urban Forestry and Urban Greening, 2021, 60, 127058.	2.3	32
28	Permeability of the city – Physical barriers of and in urban green spaces in the city of Halle, Germany. Ecological Indicators, 2021, 125, 107555.	2.6	17
29	How Are Urban Green Spaces and Residential Development Related? A Synopsis of Multi-Perspective Analyses for Leipzig, Germany. Land, 2021, 10, 630.	1.2	9
30	Integrating solutions to adapt cities for climate change. Lancet Planetary Health, The, 2021, 5, e479-e486.	5.1	70
31	Biocultural diversity in an urban context: An indicator-based decision support tool to guide the planning and management of green infrastructure. Environmental and Sustainability Indicators, 2021, 11, 100131.	1.7	7
32	Editorial for Special Issue "Nature-Based Solutions (NBS) in Cities and Their Interactions with Urban Land, Ecosystems, Built Environments and People: Debating Societal Implications― Land, 2021, 10, 937.	1.2	4
33	COVID-19 pandemic observations as a trigger to reflect on urban forestry in European cities under climate change: Introducing nature-society-based solutions. Urban Forestry and Urban Greening, 2021, 64, 127304.	2.3	8
34	The impact of the COVID-19 pandemic on the use of and attitudes towards urban forests and green spaces: Exploring the instigators of change in Belgium. Urban Forestry and Urban Greening, 2021, 65, 127305.	2.3	70
35	A glimpse into the future of exposure and vulnerabilities in cities? Modelling of residential location choice of urban population with random forest. Natural Hazards and Earth System Sciences, 2021, 21, 203-217.	1.5	10
36	Integrating Ecosystem Services, Green Infrastructure and Nature-Based Solutionsâ€"New Perspectives in Sustainable Urban Land Management. Human-environment Interactions, 2021, , 305-318.	1.2	12

#	Article	IF	CITATIONS
37	Creating accessible evidence bases: Opportunities through the integration of interactive tools into literature review synthesis. MethodsX, 2021, 8, 101558.	0.7	2
38	Urban Green Fabric Analysis Promoting Sustainable Planning in Guatemala City. Land, 2021, 10, 18.	1.2	3
39	Integrating Quantity and Quality to Assess Urban Green Space Improvement in the Compact City. Land, 2021, 10, 1367.	1.2	11
40	Incorporating spatial autocorrelation and settlement type segregation to improve the performance of an urban growth model. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 1184-1200.	1.0	2
41	Combining tacit knowledge elicitation with the SilverKnETs tool and random forests – The example of residential housing choices in Leipzig. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 400-416.	1.0	2
42	Biocultural diversity (BCD) in European cities – Interactions between motivations, experiences and environment in public parks. Urban Forestry and Urban Greening, 2020, 48, 126501.	2.3	40
43	Relating SDG11 indicators and urban scaling – An exploratory study. Sustainable Cities and Society, 2020, 52, 101853.	5.1	78
44	Earth observation based indication for avian species distribution models using the spectral trait concept and machine learning in an urban setting. Ecological Indicators, 2020, 111, 106029.	2.6	19
45	Mapping heat and traffic stress of urban park vegetation based on satellite imagery - A comparison of Bucharest, Romania and Leipzig, Germany. Urban Ecosystems, 2020, 23, 363-377.	1.1	18
46	Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability, 2020, 3, 16-24.	11.5	267
47	Remote sensing in urban planning: Contributions towards ecologically sound policies?. Landscape and Urban Planning, 2020, 204, 103921.	3.4	111
48	Saving rodents, losing primates—Why we need tailored bushmeat management strategies. People and Nature, 2020, 2, 889-902.	1.7	7
49	Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces. Remote Sensing, 2020, 12, 3690.	1.8	20
50	Methodology for development of a data and knowledge base for learning from existing nature-based solutions in Europe: The CONNECTING Nature project. MethodsX, 2020, 7, 101096.	0.7	15
51	Wastelands, Greenways and Gentrification: Introducing a Comparative Framework with a Focus on Detroit, USA. Sustainability, 2020, 12, 6189.	1.6	6
52	Neighbourhood character affects the spatial extent and magnitude of the functional footprint of urban green infrastructure. Landscape Ecology, 2020, 35, 1605-1618.	1.9	24
53	Green roof effects on daytime heat in a prefabricated residential neighbourhood in Berlin, Germany. Urban Forestry and Urban Greening, 2020, 53, 126738.	2.3	53
54	Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series. Landscape and Urban Planning, 2020, 202, 103857.	3.4	58

#	Article	IF	Citations
55	Assessment of landscape changes under different urban dynamics based on a multiple-scenario modeling approach. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 1361-1379.	1.0	11
56	Looking beyond boundaries: Revisiting the rural-urban interface of Green Space Accessibility in Europe. Ecological Indicators, 2020, 113, 106245.	2.6	34
57	Lawns in Cities: From a Globalised Urban Green Space Phenomenon to Sustainable Nature-Based Solutions. Land, 2020, 9, 73.	1.2	95
58	Carbon Pools of Berlin, Germany: Organic Carbon in Soils and Aboveground in Trees. Urban Forestry and Urban Greening, 2020, 54, 126777.	2.3	30
59	Environmental justice in the context of urban green space availability, accessibility, and attractiveness in postsocialist cities. Cities, 2020, 106, 102862.	2.7	150
60	Not Simply Green: Nature-Based Solutions as a Concept and Practical Approach for Sustainability Studies and Planning Agendas in Cities. Land, 2020, 9, 19.	1.2	84
61	High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Science of the Total Environment, 2020, 729, 138244.	3.9	118
62	Surface runoff in urban areas: The role of residential cover and urban growth form. Journal of Cleaner Production, 2020, 262, 121421.	4.6	53
63	Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecological Indicators, 2020, 114, 106288.	2.6	51
64	Urban open spaces and the urban matrix: elements, form and functions., 2020,, 30-50.		4
65	"An interdisciplinary perspective on ecosystem services and human well-being†results and potentials of German-Russian cooperation within the project. InterCarto InterGIS, 2020, 26, 80-93.	0.1	0
66	Mediating Sustainability and Liveabilityâ€"Turning Points of Green Space Supply in European Cities. Frontiers in Environmental Science, 2019, 7, .	1.5	50
67	Enabling Green and Blue Infrastructure to Improve Contributions to Human Well-Being and Equity in Urban Systems. BioScience, 2019, 69, 566-574.	2.2	150
68	Reurbanisation: A longâ€ŧerm process or a shortâ€ŧerm stage?. Population, Space and Place, 2019, 25, e2266.	1.2	12
69	Disentangling economic, cultural, and nutritional motives to identify entry points for regulating a wildlife commodity chain. Biological Conservation, 2019, 238, 108177.	1.9	15
70	Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin, Germany. Ecosystem Services, 2019, 40, 101031.	2.3	25
71	The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness. Applied Energy, 2019, 254, 113671.	5.1	48
72	The future of urban sustainability: Smart, efficient, green or just? Introduction to the special issue. Sustainable Cities and Society, 2019, 51, 101761.	5.1	41

#	Article	IF	Citations
73	Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery. Remote Sensing, 2019, 11, 1966.	1.8	40
74	Wounds, ghosts and gardens: Historical trauma and green reparations in Berlin and Detroit. Cities, 2019, 93, 153-163.	2.7	12
75	Of bugs and men: How forest pests and their management strategies are perceived by visitors of an urban forest. Urban Forestry and Urban Greening, 2019, 41, 248-254.	2.3	8
76	Urban green infrastructure – connecting people and nature for sustainable cities. Urban Forestry and Urban Greening, 2019, 40, 1-3.	2.3	42
77	Urban Telecouplings., 2019,, 261-280.		4
78	Mapping of Soil Total Nitrogen Content in the Middle Reaches of the Heihe River Basin in China Using Multi-Source Remote Sensing-Derived Variables. Remote Sensing, 2019, 11, 2934.	1.8	13
79	Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sensing, 2019, 11, 2356.	1.8	46
80	Pathways of demographic and urban development and their effects on land take and ecosystem services: The case of Lisbon Metropolitan Area, Portugal. Land Use Policy, 2019, 82, 181-194.	2.5	35
81	Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban Forestry and Urban Greening, 2019, 40, 4-16.	2.3	182
82	Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city. Landscape and Urban Planning, 2019, 182, 44-54.	3.4	48
83	Addressing societal challenges through nature-based solutions: How can landscape planning and governance research contribute?. Landscape and Urban Planning, 2019, 182, 12-21.	3.4	181
84	Co-creating urban green infrastructure connecting people and nature: A guiding framework and approach. Journal of Environmental Management, 2019, 233, 757-767.	3.8	69
85	Is urban spatial development on the right track? Comparing strategies and trends in the European Union. Landscape and Urban Planning, 2019, 181, 22-37.	3.4	72
86	The Rural-to-Urban Gradient and Ecosystem Services. , 2019, , 141-146.		2
87	Shrinking Cities and Ecosystem Services: Opportunities, Planning, Challenges, and Risks., 2019, , 271-277.		4
88	Why Do(n't) People Move When They Get Older? Estimating the Willingness to Relocate in Diverse Ageing Cities. Urban Planning, 2019, 4, 53-69.	0.7	9
89	Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosystem Services, 2018, 30, 73-85.	2.3	45
90	Cities Matter: Workspaces in Ecosystem-Service Assessments with Decision-Support Tools in the Context of Urban Systems. BioScience, 2018, 68, 164-166.	2.2	5

#	Article	IF	CITATIONS
91	The effect of multi-dimensional indicators on urban thermal conditions. Journal of Cleaner Production, 2018, 177, 115-123.	4.6	95
92	Do Urban Biodiversity and Urban Ecosystem Services Go Hand in Hand, or Do We Just Hope It Is That Easy?. Future City, 2018, , 301-312.	0.2	5
93	The impact of different urban dynamics on green space availability: A multiple scenario modeling approach for the region of Munich, Germany. Ecological Indicators, 2018, 93, 1-12.	2.6	57
94	Guatemala City: A socio-ecological profile. Cities, 2018, 72, 379-390.	2.7	10
95	Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecological Indicators, 2018, 85, 190-203.	2.6	65
96	Locating Spatial Opportunities for Nature-Based Solutions: A River Landscape Application. Water (Switzerland), 2018, 10, 1869.	1.2	25
97	Global Urbanization. , 2018, , 19-44.		37
98	Spatial variation of green space equity and its relation with urban dynamics: A case study in the region of Munich. Ecological Indicators, 2018, 93, 512-523.	2.6	78
99	Within-Class and Neighborhood Effects on the Relationship between Composite Urban Classes and Surface Temperature. Sustainability, 2018, 10, 645.	1.6	11
100	Individual Local Farmers' Perceptions of Environmental Change in Tanzania. Water (Switzerland), 2018, 10, 525.	1.2	9
101	Compact or spread? A quantitative spatial model of urban areas in Europe since 1990. PLoS ONE, 2018, 13, e0192326.	1.1	61
102	Exploring city-wide patterns of cultural ecosystem service perceptions and use. Ecological Indicators, 2017, 77, 80-95.	2.6	159
103	Urban shrinkage in Germany: An entangled web of conditions, debates and policies. Cities, 2017, 69, 116-123.	2.7	58
104	Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosystem Services, 2017, 24, 147-159.	2.3	202
105	Back to nature! Or not? Urban dwellers and their forest in berlin. Urban Ecosystems, 2017, 20, 1069-1079.	1.1	4
106	Greening cities – To be socially inclusive? About the alleged paradox of society and ecology in cities. Habitat International, 2017, 64, 41-48.	2.3	313
107	The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of the Total Environment, 2017, 579, 1215-1227.	3.9	748
108	An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environmental Modelling and Software, 2017, 93, 127-145.	1.9	147

#	Article	IF	Citations
109	Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosystem Services, 2017, 27, 161-171.	2.3	117
110	Integrating the third dimension into the concept of urban ecosystem services: A review. Ecological Indicators, 2017, 72, 374-398.	2.6	30
111	The impact of urban regrowth on the built environment. Urban Studies, 2017, 54, 2683-2700.	2.2	109
112	A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods. Water (Switzerland), 2017, 9, 936.	1.2	41
113	Towards a <i>National Ecosystem Assessment</i> in Germany: A Plea for a Comprehensive Approach. Gaia, 2017, 26, 27-33.	0.3	8
114	Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research. PLoS ONE, 2017, 12, e0189451.	1.1	28
115	Urban Wetlands and Riparian Forests as a Nature-Based Solution for Climate Change Adaptation in Cities and Their Surroundings. Theory and Practice of Urban Sustainability Transitions, 2017, , 111-121.	1.9	18
116	Change and Persistency., 2017,, 257-271.		1
117	Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 2016, 21, .	1.0	753
118	Key insights for the future of urban ecosystem services research. Ecology and Society, 2016, 21, .	1.0	219
119	Multi-Variate Analyses of Flood Loss in Can Tho City, Mekong Delta. Water (Switzerland), 2016, 8, 6.	1.2	30
120	Adding Natural Areas to Social Indicators of Intra-Urban Health Inequalities among Children: A Case Study from Berlin, Germany. International Journal of Environmental Research and Public Health, 2016, 13, 783.	1.2	35
121	On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City. PLoS ONE, 2016, 11, e0160471.	1.1	75
122	Considering the ways biocultural diversity helps enforce the urban green infrastructure in times of urban transformation. Current Opinion in Environmental Sustainability, 2016, 22, 7-12.	3.1	57
123	Urban green space availability in European cities. Ecological Indicators, 2016, 70, 586-596.	2.6	374
124	Exploring local consequences of two land-use alternatives for the supply of urban ecosystem services in Stockholm year 2050. Ecological Indicators, 2016, 70, 615-629.	2.6	47
125	Advancing understanding of the complex nature of urban systems. Ecological Indicators, 2016, 70, 566-573.	2.6	197
126	Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy, 2016, 57, 405-417.	2.5	310

#	ARTICLE Nature based solutions for the contemporary city/Re-naturing the city/Reflections on urban	IF	Citations
127	landscapes, ecosystems services and nature-based solutions in cities/Multifunctional green infrastructure and climate change adaptation: brownfield greening as an adaptation strategy for vulnerable communities?/Delivering green infrastructure through planning: insights from practice in Fingal, Ireland/Planning for biophilic cities: from theory to practice. Planning Theory and Practice.	0.8	115
128	2016, 17, 267-300. The effects of growth, shrinkage, population aging and preference shifts on urban developmentâ€"A spatial scenario analysis of Berlin, Germany. Land Use Policy, 2016, 52, 240-254.	2.5	71
129	Participatory selection of ecosystem services for spatial planning: Insights from the Lisbon Metropolitan Area, Portugal. Ecosystem Services, 2016, 18, 87-99.	2.3	37
130	Mapping transition potential with stakeholder- and policy-driven scenarios in Rotterdam City. Ecological Indicators, 2016, 70, 630-643.	2.6	25
131	Advancing Urban Ecology toward a Science of Cities. BioScience, 2016, 66, 198-212.	2.2	491
132	Stadtökosysteme. , 2016, , .		14
133	Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environmental Science and Policy, 2016, 62, 45-56.	2.4	213
134	Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecological Indicators, 2016, 70, 574-585.	2.6	60
135	Ecosystem services in urban land use planning: Integration challenges in complex urban settingsâ€"Case of Stockholm. Ecosystem Services, 2016, 22, 204-212.	2.3	79
136	Urban Green Space in Transition: Historical parks and Soviet heritage in Arkhangelsk, Russia. Critical Housing Analysis, 2016, 3, 1.	0.2	9
137	Worum geht es bei Stadtökologie und ihrer Anwendungen in der Stadtentwicklung?. , 2016, , 245-254.		1
138	Was leisten Stadtökosysteme fýr die Menschen in der Stadt?., 2016,, 129-163.		3
139	Urbanisierung und ihre Herausforderungen f $ ilde{A}^1\!\!/\!4$ r die $ ilde{A}^{m{q}}$ kologische Stadtentwicklung. , 2016, , 1-30.		2
140	Was sind Stadtökosysteme und warum sind sie besonders?., 2016,, 61-84.		1
141	Wie verwundbar sind Stadt $ ilde{A}\P$ kosysteme und wie kann mit ihnen urbane Resilienz entwickelt werden?. , 2016, , 165-205.		1
142	A Hybrid Approach Integrating 3D City Models, Remotely Sensed SAR Data and Interval-Valued Fuzzy Soft Set Based Decision Making for Post Disaster Mapping of Urban Areas. Lecture Notes in Geoinformation and Cartography, 2015, , 87-105.	0.5	2
143	Ecosystem services in spatial planning and strategic environmental assessment—A European and Portuguese profile. Land Use Policy, 2015, 48, 158-169.	2.5	74
144	Reflections about blue ecosystem services in cities. Sustainability of Water Quality and Ecology, 2015, 5, 77-83.	2.0	86

#	Article	IF	CITATIONS
145	Scale and context dependence of ecosystem service providing units. Ecosystem Services, 2015, 12, 157-164.	2.3	179
146	Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecological Indicators, 2015, 52, 490-497.	2.6	318
147	Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecological Indicators, 2015, 55, 146-158.	2.6	247
148	Does vegetation mitigate the temperature in urban area or it follows the temperature of its surrounding?. , 2015, , .		0
149	Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research. Environmental Impact Assessment Review, 2015, 50, 25-34.	4.4	479
150	Understanding and quantifying landscape structure – A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 2015, 295, 31-41.	1.2	277
151	Conceptualizing the nexus between urban shrinkage and ecosystem services. Landscape and Urban Planning, 2014, 132, 159-169.	3.4	153
152	Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landscape and Urban Planning, 2014, 122, 129-139.	3.4	515
153	Linkages between ecosystem services provisioning, urban growth and shrinkage – A modeling approach assessing ecosystem service trade-offs. Ecological Indicators, 2014, 42, 73-94.	2.6	84
154	The Theorized Urban Gradient (TUG) methodâ€"A conceptual framework for socio-ecological sampling in complex urban agglomerations. Ecological Indicators, 2014, 36, 100-110.	2.6	31
155	Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landscape and Urban Planning, 2014, 125, 105-116.	3.4	96
156	Zooming into temperature conditions in the city of Leipzig: How do urban built and green structures influence earth surface temperatures in the city?. Science of the Total Environment, 2014, 496, 289-298.	3.9	59
157	Applying a novel urban structure classification to compare the relationships of urban structure and surface temperature in Berlin and New York City. Applied Geography, 2014, 53, 427-437.	1.7	44
158	Integration of ecosystem services in spatial planning: a survey on regional planners' views. Landscape Ecology, 2014, 29, 1287-1300.	1.9	46
159	A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio, 2014, 43, 413-433.	2.8	758
160	Structural Diversity: A Multi-dimensional Approach to Assess Recreational Services in Urban Parks. Ambio, 2014, 43, 480-491.	2.8	115
161	Traffic-induced noise levels in residential urban structures using landscape metrics as indicators. Ecological Indicators, 2014, 45, 611-621.	2.6	23
162	Compact, eco-, hybrid or teleconnected? Novel aspects of urban ecological research seeking compatible solutions to socio-ecological complexities. Ecological Indicators, 2014, 42, 1-5.	2.6	17

#	Article	IF	Citations
163	Ecosystem Services in Urban Landscapes: Practical Applications and Governance Implications. Ambio, 2014, 43, 407-412.	2.8	165
164	Mapping the diversity of regulating ecosystem services in European cities. Global Environmental Change, 2014, 26, 119-129.	3.6	109
165	How Is Urban Land Use Unique?., 2014, , 299-312.		3
166	Participatory modelling of vulnerability and adaptive capacity in flood risk management. Natural Hazards, 2013, 67, 77-97.	1.6	35
167	Green spaces of European cities revisited for 1990–2006. Landscape and Urban Planning, 2013, 110, 113-122.	3.4	266
168	Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities. Ecological Indicators, 2013, 29, 179-190.	2.6	256
169	Towards a flood risk assessment ontology – Knowledge integration into a multi-criteria risk assessment approach. Computers, Environment and Urban Systems, 2013, 37, 82-94.	3.3	68
170	Dealing with Sustainability Trade-Offs of the Compact City in Peri-Urban Planning Across European City Regions. European Planning Studies, 2013, 21, 473-497.	1.6	147
171	Shrinking Cities as Retirement Cities? Opportunities for Shrinking Cities as Green Living Environments for Older Individuals. Environment and Planning A, 2013, 45, 1455-1473.	2.1	38
172	Tools for Modelling and Assessing Peri-Urban Land Use Futures. , 2013, , 69-88.		1
173	Endless Urban Growth? On the Mismatch of Population, Household and Urban Land Area Growth and Its Effects on the Urban Debate. PLoS ONE, 2013, 8, e66531.	1.1	184
174	Leipzig-Halle: Ecosystem Services in a Stagnating Urban Region in Eastern Germany., 2013,, 209-239.		3
175	Shrinking Cities, Biodiversity and Ecosystem Services. , 2013, , 253-274.		73
176	Stewardship of the Biosphere in the Urban Era. , 2013, , 719-746.		31
177	Regional Assessment of Europe. , 2013, , 275-278.		0
178	Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7687-7692.	3.3	682
179	Simulating Demography and Housing Demand in an Urban Region under Scenarios of Growth and Shrinkage. Environment and Planning B: Planning and Design, 2012, 39, 229-246.	1.7	53
180	Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landscape and Urban Planning, 2012, 104, 95-104.	3.4	241

#	Article	IF	Citations
181	The carbon footprint of urban green space—A life cycle approach. Landscape and Urban Planning, 2012, 104, 220-229.	3.4	225
182	Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy, 2012, 29, 521-535.	2.5	379
183	Ecosystem properties, potentials and services – The EPPS conceptual framework and an urban application example. Ecological Indicators, 2012, 21, 7-16.	2.6	258
184	Valuing post-mining landscapes using an ecosystem services approachâ€"An example from Germany. Ecological Indicators, 2012, 18, 567-574.	2.6	122
185	Synergies, Trade-offs, and Losses of Ecosystem Services in Urban Regions: an Integrated Multiscale Framework Applied to the Leipzig-Halle Region, Germany. Ecology and Society, 2012, 17, .	1.0	239
186	Urban – Rural Linkages—Analysing, Modelling, and Understanding Drivers, Pressures, and Impacts of Land Use Changes along the Rural-to-Urban Gradient. Environment and Planning B: Planning and Design, 2012, 39, 194-197.	1.7	11
187	Towards sustainable settlement growth: A new multi-criteria assessment for implementing environmental targets into strategic urban planning. Environmental Impact Assessment Review, 2012, 32, 195-210.	4.4	75
188	Actors and factors in land-use simulation: The challenge of urban shrinkage. Environmental Modelling and Software, 2012, 35, 92-103.	1.9	174
189	Urban Population Development in Europe, 1991–2008: The Examples of Poland and the UK. International Journal of Urban and Regional Research, 2012, 36, 1326-1348.	1.2	41
190	Carbon sequestration in shrinking cities $\hat{a} \in \text{``}$ potential or a drop in the ocean?. Alliance for Global Sustainability Bookseries, 2012, , 61-70.	0.2	3
191	ABMland - a Tool for Agent-Based Model Development on Urban Land Use Change. Jasss, 2012, 15, .	1.0	9
192	Creative intervention in a dynamic city: A sustainability assessment of an interim use strategy for brownfields in Leipzig, Germany. Landscape and Urban Planning, 2011, 100, 189-201.	3.4	154
193	Environmental decision support systems (EDSS) development – Challenges and best practices. Environmental Modelling and Software, 2011, 26, 1389-1402.	1.9	251
194	Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Natural Hazards, 2011, 58, 731-751.	1.6	169
195	Diversifying European agglomerations: evidence of urban population trends for the 21st century. Population, Space and Place, 2011, 17, 236-253.	1.2	276
196	Assessing climate impacts of planning policiesâ€"An estimation for the urban region of Leipzig (Germany). Environmental Impact Assessment Review, 2011, 31, 97-111.	4.4	82
197	Omnipresent Sprawl? A Review of Urban Simulation Models with Respect to Urban Shrinkage. Environment and Planning B: Planning and Design, 2010, 37, 265-283.	1.7	125
198	Modeling and simulating residential mobility in a shrinking city using an agent-based approach. Environmental Modelling and Software, 2010, 25, 1225-1240.	1.9	90

#	Article	IF	Citations
199	Evolving Reurbanisation? Spatio-temporal Dynamics as Exemplified by the East German City of Leipzig. Urban Studies, 2010, 47, 967-990.	2.2	155
200	Green space functionality under conditions of uneven urban land use development. Journal of Land Use Science, 2010, 5, 143-158.	1.0	24
201	Does demographic change affect land use patterns?. Land Use Policy, 2010, 27, 726-737.	2.5	78
202	The urban-to-rural gradient of land use change and impervious cover: a long-term trajectory for the city of Leipzig. Journal of Land Use Science, 2010, 5, 123-141.	1.0	127
203	A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Natural Hazards, 2009, 48, 17-39.	1.6	287
204	Effects of urbanisation on the water balance – A long-term trajectory. Environmental Impact Assessment Review, 2009, 29, 211-219.	4.4	182
205	Determinants of floodplain forest development illustrated by the example of the floodplain forest in the District of Leipzig. Forest Ecology and Management, 2009, 258, 887-894.	1.4	22
206	Environmental impact assessment of urban land use transitions—A context-sensitive approach. Land Use Policy, 2009, 26, 414-424.	2.5	190
207	Flood risk assessment in european river basins—concept, methods, and challenges exemplified at the mulde river. Integrated Environmental Assessment and Management, 2009, 5, 17-26.	1.6	76
208	Birds and the City: Urban Biodiversity, Land Use, and Socioeconomics. Ecology and Society, 2009, 14, .	1.0	112
209	Multi-criteria assessment of socio-environmental aspects in shrinking cities. Experiences from eastern Germany. Environmental Impact Assessment Review, 2008, 28, 483-503.	4.4	126
210	Urban Ecology of Shrinking Cities: An Unrecognized Opportunity?. Nature and Culture, 2008, 3, 1-8.	0.3	125
211	Guidelines for the "Perfect Inner City― Discussing the Appropriateness of Monitoring Approaches for Reurbanization. European Planning Studies, 2008, 16, 1075-1100.	1.6	77
212	Practices and Lessons Learned in Coping with Climatic Hazards at the River-Basin Scale: Floods and Droughts. Ecology and Society, 2008, 13, .	1.0	39
213	Land use impacts of demographic change – lessons from Eastern German urban regions. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 329-344.	0.1	17
214	Loess in Europeâ€"its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Science Reviews, 2007, 26, 1301-1312.	1.4	350
215	Does urban sprawl drive changes in the water balance and policy?. Landscape and Urban Planning, 2007, 80, 1-13.	3.4	185
216	Changes to Central European landscapes—Analysing historical maps to approach current environmental issues, examples from Saxony, Central Germany. Land Use Policy, 2007, 24, 248-263.	2.5	77

#	Article	IF	CITATIONS
217	Holocene floodplains and their distribution in urban areasâ€"functionality indicators for their retention potentials. Landscape and Urban Planning, 2003, 66, 5-18.	3.4	35
218	Simulation Models on Human–Nature Interactions in Urban Landscapes: A Review Including Spatial Economics, System Dynamics, Cellular Automata and Agent-based Approaches. Living Reviews in Landscape Research, 0, 3, .	0.0	43
219	Does the Ecosystem Service Concept Reach its Limits in Urban Environments?. Landscape Online, 0, 51, 1-22.	0.0	30
220	The functional composition of the neophytic flora changes in response to environmental conditions along a rural-urban gradient. NeoBiota, 0, 54, 23-47.	1.0	8
221	How to derive spatial agents: A mixedâ€method approach to model an elderly population with scarce data. Population, Space and Place, 0, , .	1.2	1